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Abstract: This article presents a comprehensive study of a reaction—diffusion SIRS epidemic model with
general incidence. We provide a detailed treatment that includes: (i) the well-posedness of the system
and the existence of classical solutions, (ii) the threshold dynamics characterized by the basic reproduction
number Ry, (iii) the existence of endemic equilibria when Ry, > 1, and (iv) the analysis of both local
and global stability using Lyapunov functionals. The theoretical findings are complemented by numerical
simulations illustrating convergence to equilibria and the influence of spatial heterogeneity. This work
offers a coherent picture of the epidemic dynamics in spatially structured populations.
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1 Introduction

Mathematical epidemiology seeks to understand the spread and control of infectious diseases. Reaction—diffusion
models are particularly well suited to account for spatial heterogeneity while tracking the temporal evolution of disease
dynamics [|1,2]]. Among them, SIRS-type models are appropriate for infections where immunity wanes and reinfection
is possible.

In this article, we develop a comprehensive study of a reaction—diffusion SIRS system with general incidence. Our
purpose is to investigate in detail the mathematical well-posedness of the model, the threshold dynamics governed
by the basic reproduction number Ry, and the existence and stability of endemic equilibria. The analysis relies on
Lyapunov functionals and comparison arguments, while numerical simulations illustrate the theoretical findings. This
program is motivated by, and framed in connection with, the classical works of Diekmann et al. [|3]], van den Driessche
and Watmough [4], and subsequent studies on Lyapunov methods [5-7].

Our work is closely related to recent research on diffusive epidemic models in heterogeneous environments. In
particular, Avila-Vales, Garcia-Almeida, and Perez [8] analyzed a diffusive SIR model with saturated incidence and
permanent immunity, establishing well-posedness, threshold dynamics, and stability results. The present study extends
this line of research by incorporating an SIRS structure with waning immunity and a general incidence function [9,10].
This generalization introduces new mathematical challenges, especially in proving global stability, and broadens the
epidemiological relevance of the framework [|11},/12].

Beyond the mathematical interest, this study is relevant for epidemiology. Reaction—diffusion models capture how
spatial heterogeneity, movement, and local variations in parameters affect disease persistence or extinction. The SIRS
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structure, accounting for waning immunity, is particularly suited to recurrent infections such as influenza, pertussis, or
coronaviruses. A rigorous analysis of threshold dynamics and endemic equilibria therefore provides valuable insight
into the conditions under which a disease may disappear or become established in a heterogeneous environment.

The remainder of this paper is organized as follows. In Section 2, we formulate the spatially heterogeneous SIRS
model with a general incidence function under Neumann boundary conditions. Section 3 is devoted to the well-
posedness of the system, where we establish existence, uniqueness, and positivity of classical solutions using semi-
group theory and maximum principles. In Section 4, we analyze the steady states of the system, derive the basic
reproduction number Ry, and investigate its role as a threshold parameter. Section 5 examines the endemic equilib-
rium, discussing its existence, qualitative properties, and both local and global stability through a Lyapunov functional
approach. Section 6 presents numerical simulations that illustrate the theoretical results and confirm the predicted
threshold dynamics. Finally, Section 7 summarizes the main conclusions and outlines possible extensions of the model,
such as stochastic perturbations, time delays, or vaccination strategies.

2 The Model and Functional Setting

We consider the reaction—diffusion SIRS system defined on a smooth bounded domain Q ¢ RY, N < 3, with homoge-
neous Neumann boundary conditions:

OS —dgAS = A(z) — B(x, S, T) — u(x)S + w(x)R,

Ol —drAI = B(z, S, 1) — (u(z) + y(2)) 1,

OtR — drAR = y(x)I — (,u(ac) + w(:c))R, 2.1
0,8=0,I =0,R=0 on 99,

S(x,0) = So(x), I(x,0)=Io(x), R(z,0)= Ry(x).

Here S, I, and R denote the densities of susceptible, infected, and recovered individuals. The parameters dg, dj,
dg are diffusion rates, A(z) the recruitment term, u(z) the natural death rate, v(x) the recovery rate, w(x) the loss of
immunity, and §(x, S, I) a general incidence function.

We assume:

1. The coefficients are smooth and strictly positive;
2. (is smooth, increasing in I, Lipschitz continuous, and vanishes when S = 0 or I = 0;

3. Initial data are bounded and nonnegative.

3 Well-Posedness of the Model

We study the well-posedness of system (1). To state precise results, we introduce the Banach spaces

X :=L*(Q)3, D = {u = (u1,uz,u3) € H*(Q)* : ,u; = 0 on 9N}.
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Let the linear operator A : D C X — X be defined by

dSAul
Au = drAus |, u = (ul,u2,U3) e D.
dRA’IL3

The nonlinear reaction map F : X — X is given by

Ax) — B(z, S, I) — u(x)S + w(z)R
F(S,I,R) = B(x, 8, 1) — (u(x) +y(z))I
(@) = (p(z) + w(@)) R

3.1 Existence and Uniqueness via the Lumer-Phillips Theorem

Theorem 3.1 (Generation and Local Well-Posedness). Under the standing hypotheses on the domain Q2 and the coeffi-
cients, the operator A : D C X — X defined above is densely defined, closed, and dissipative, and its range is dense in
X. Consequently, by the Lumer—Phillips theorem, A generates a strongly continuous contraction semigroup (e!4);>q on X.
Moreover, the nonlinear map F is locally Lipschitz on bounded subsets of X, and for any Uy € X there exists Tpax > 0
and a unique mild solution

t
UeC(0,Tmax); X),  U(t) = Uy +/ eIAR(U(s)) ds.
0

Proof. We split the proof into several steps.
Step 1: Density and closedness. The domain
D = H*(Q)*> N {0,u; = 0}

is dense in
X = (),

because C*°(2) is dense in L?(2), and smooth functions satisfying Neumann boundary conditions are dense in H?((2).
Taking triples yields density in X. The operator A is a block-diagonal matrix of elliptic operators with domain D; each
block d;A with Neumann boundary conditions is a closed operator on L?(2). Hence A is closed.

Step 2: Dissipativity. We show that A is dissipative, i.e. for every u € D one has (Au, u)x < 0. Writing u = (u1, uz, us)
and using integration by parts together with Neumann boundary conditions, we obtain

(Au,uyx = Z dj/(Auj)uj dx:—Zdj/ V| de < 0.

JE{S,I,R}

Hence A is dissipative.

Step 3: Surjectivity of \] — A for large A > 0. To apply the Lumer-Phillips theorem, we need the range condition:
for some (equivalently all sufficiently large) A > 0, the operator A\l — A : D — X has range equal to X. Fix A > 0 and
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let f = (f1, f2, f3) € X. Consider the elliptic Neumann problems for each component:
)\u]‘ — deUj = fj in Q, (’)l,uj = (0 on 0N.

Classical elliptic theory (Lax—Milgram or Fredholm alternative) guarantees a unique solution u; € H?(2) for each j,
since A > O shifts the operator away from the kernel. Therefore, A\I — A is surjective onto X, and in particular the
range is dense.

Step 4: Conclusion by Lumer-Phillips. We have shown that A is densely defined, closed, dissipative, and that A\ — A
is surjective for some A > 0. By the Lumer-Phillips theorem (see, e.g., [[13]]), A generates a strongly continuous
contraction semigroup (e‘4);>0 on X.

Step 5: Local Lipschitz continuity of F'. Recall the assumptions on 3: it is locally Lipschitz in (S, I) uniformly in
x € , and the coefficients are bounded. Let Bg C X denote a ball of radius R centered at the origin intersected with
L*°-bounded triples. By Sobolev embedding, and since we only work on bounded sets, functions in By are pointwise
defined a.e., and one can use the Lipschitz constant of 5 on the range determined by R. A straightforward computation
gives, for U = (S,I,R) and U = (S, I, R) in Bg:

|FW) = PO < Cr(1IS = Sle + 1T = T3 + |R = Rll3:) = CrllU =Tk,
for some constant C'r depending on R and the coefficients. Thus F is locally Lipschitz on bounded subsets of X.

Step 6: Existence and uniqueness of mild solutions. With the generation and local Lipschitz properties in hand, we
apply the standard Picard fixed-point theorem in the Banach space C([0,T]; X) to the variation of constants formula

t
d(U)(t) == Uy +/ eAR(U(s)) ds.
0
For T > 0 small enough, ® is a contraction on a closed ball of radius p in C([0,T]; X) centered at the function ¢ —
e!4Uy, hence there exists a unique fixed point, which is the unique mild solution on [0, 7]. Standard continuation yields
a maximal existence time Ty,,x > 0 and the blow-up alternative: if Ty,.x < oo, then ||U(¢)||x — oo as ¢ T Tmax- O

3.2 Regularity of Solutions

Remark 3.2. Alternative approaches to local and global well-posedness can be obtained via parabolic LP-L4 estimates and
the Banach fixed-point theorem, see for instance Amann [|14|]. While this approach is often developed for problems posed
on the whole space using Fourier transform techniques, it can be adapted to bounded domains with appropriate elliptic
regularity. Here, we have preferred the semigroup method for clarity and conciseness.

We now improve the regularity of mild solutions to classical (strong) solutions under additional regularity assump-
tions on the initial data.

Theorem 3.3 (Regularity). Let Uy € D N L>(Q)3. Then the mild solution from Theorem is actually a classical
solution:
UeC(o,T);D)NnCY[0,T); X),  forevery T < Tmax-

In particular, if Uy € H*(Q)3, then
UeC*(Qx(0,T)])
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and satisfies system (2.1)) pointwise.

Remark 3.4. The regularity improvement follows from standard semigroup theory and parabolic regularity results. Since
the linearized operators generate analytic semigroups on X and the nonlinearities are sufficiently smooth, mild solutions
inherit additional regularity from the initial data. In particular, higher Sobolev regularity of U, propagates through the
system, ensuring that the solution becomes classical and satisfies the PDE pointwise.

Proof. We proceed in steps using bootstrap arguments.

Step 1: Initial regularity from semigroup theory. For U, € X, the variation of constants formula yields U &
C([0,T); X). If Uy € D, then AUy € D for t > 0, and ¢ — e*“U is differentiable in X. Hence, U inherits additional
regularity.

Step 2: H'-regularity. The smoothing property of the heat semigroup implies ¢4 maps X into H'(Q2)? for ¢t > 0. The
integral term is in H' as well because F(U(s)) € X for each s. Therefore, U(t) € H(Q)? for all ¢ > 0.

Step 3: Bootstrap to H?2. Since U(t) € H' and coefficients are smooth, the nonlinearities 3(x, S, ), vI, etc., belong
to L?(Q2) for each t. Thus,
U — AU = F(U) € X.

By elliptic regularity of A, this implies U(t) € H?(Q)3 for all t > 0. Hence, U € C((0,T]; D).

Step 4: Higher regularity. Once U(t) € H?, differentiating the PDE in time shows 0;U € L?(f)); hence U €
C([0,T]; X). Iterating this argument with parabolic Schauder estimates and using smooth coefficients yields U €
C?1(Q x (0,T)), provided the initial data are in H?2. This bootstrap procedure ensures that mild solutions are in fact
classical. O

3.3 Positivity and Boundedness

Theorem 3.5 (Positivity and uniform bounds). Assume that Uy = (Sy, Iy, Ro) € L>(Q)3 with Sp, Iy, Ry > 0 a.e. Then,
the corresponding classical solution satisfies

S(xz,t), I(x,t), R(x,t) >0 foralxzeQ, t>0.
Moreover, there exists a continuous function M (xz) > 0 (depending only on the coefficients) such that
S(z,t) + I(z,t) + R(z,t) < M(z), YxeQ, t>0.
In particular; solutions do not blow up in finite time and the mild solution of Theorem is global: Ti.x = 0.

Proof. Positivity is a direct consequence of the parabolic maximum principle applied componentwise. If S(zg,ty) = 0
at some point (xg, o), then, since S(xg, 0, I(xo,ty)) = 0 and all other terms in the S-equation are nonnegative, we
have

S (o, to) > 0.

This ensures that S cannot become negative. Analogous arguments hold for I and R.
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For uniform bounds, sum the three equations in (2.1) to obtain an equation for the total population N := S+ I+ R:
0;N — dAN = A(z) — u(x)N,

where d is a convex combination of dg, d;,dr. The comparison principle for scalar parabolic equations and the posi-

tivity of p imply that

A(z)
N(z,t) < ——= forallt >0, x € Q,
()

whenever N(-,0) < A(-)/u(-). If the initial total population does not satisfy this inequality, one constructs an explicit
supersolution (a large constant) and applies comparison to obtain a uniform bound depending on the coefficients and
initial mass. Therefore, the solution remains uniformly bounded and cannot blow up in finite time, yielding global
existence. O

4 Threshold Dynamics

In this section we define the basic reproduction number R, via a next-generation operator and study the stability of
the disease-free equilibrium (DFE). We linearize the infected equation at the DFE and use spectral properties of the
associated linear operator to characterize invasion and extinction.

4.1 Disease-free equilibrium and linearization

Let (S*(x),0, R*(x)) denote the DFE, where S* and R* solve the elliptic subsystem obtained by setting 7 = 0 in (2.I):

—dsAS* = Az) — pu(2)S* + w(z)R*,
—dRAR" = —(pu(z) + w(x))R",

with Neumann boundary conditions. Under our standing hypotheses, this subsystem admits a unique nonnegative
solution with S*(z) > 0 for all € Q. Linearizing the I-equation of around the DFE yields the linear parabolic
equation

Ol =di AL +b(x)],  b(z):=0rB(x,5"(2),0) — (u(z) + (),

subject to homogeneous Neumann boundary conditions. The sign of the principal eigenvalue of the elliptic operator
L:=d;A+b(x)

determines whether the infection can invade when rare.

4.2 Next-generation operator and R,

Following the next-generation approach (see van den Driessche and Watmough [4], Diekmann et al. [3]]), define on
L?(Q) the linear operators

A[ = dIA - (/,L(JU) +’Y($)), Ty : Y= 8[6(33,5*(J)),0) 90('1:)
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The next-generation operator is
-1
K :=-A; Ty,

which is a compact, positive operator on L?(f2) under the present hypotheses. We define the basic reproduction
number by
Ro = T(K),

the spectral radius of K. A classical relation links R, with the principal eigenvalue \; of L: one has

M >0 < Rog>1, M <0 << Ry<l1.

Thus Ry = 1 is the invasion/extinction threshold.

4.3 Stability of the DFE

Theorem 4.1 (Threshold dynamics and DFE stability). Under the standing hypotheses, let R, be defined as above. If
Ry < 1, then the disease-free equilibrium (S*,0, R*) is globally asymptotically stable in the admissible region. If Ry > 1,
then the DFE is unstable and the system is uniformly persistent: there exists n > 0 such that any solution with nontrivial
initial infection satisfies

lim inf [|1(-, 2)(| o ) = -

Sketch of proof. If Ry < 1, then the principal eigenvalue A\; of L is negative. Linearized stability implies exponential
decay of small infections. Using comparison principles and suitable global supersolutions, one extends this decay to
the full nonlinear system. Monotonicity arguments and LaSalle-type reasoning (or the theory of monotone dynamical
systems) lead to global attraction toward the DFE.

If Ry > 1, then A; > 0, and the linearized infected equation exhibits exponential growth for small perturbations. By
taking a small multiple of the positive principal eigenfunction, one constructs a positive subsolution showing invasion
when I # 0. Uniform persistence then follows from standard persistence theorems for cooperative reaction—diffusion
systems (see Cantrell and Cosner [15]]) and the theory of monotone semiflows. O

4.4 Variational characterization (mass-action case)

In the special case §(x, S, I) = B(x)SI, the operator K admits a Rayleigh-type characterization. With S*(z) as above,
one has

/ B(z)S* (2)p(x)? da
Ry = sup Q

oett @0 [ (4196 + (ula) + (@) pla)) do

This quotient is convenient for estimates and numerical computation. This variational characterization of Ry in the
spatial setting was first established by Allen, Bolker, Lou, and Nevai [|16], and has since become a standard tool in
the analysis of epidemic models with diffusion. The threshold analysis prepares the ground for Section 5, where the
existence of endemic equilibria when R, > 1 is studied.
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5 Endemic Equilibrium: Existence, Properties, and Stability

We now turn to the case Ry > 1. In this regime, infection can persist and we expect the existence of positive endemic
steady states. These equilibria are solutions (S, I, R) of the elliptic system obtained by setting the time derivatives to
zero in (2.1).

Theorem 5.1 (Existence of a positive endemic equilibrium). Assume that all standing hypotheses hold and that the basic
reproduction number satisfies Ry > 1. Then system (2.1) admits at least one positive steady state (S, I, R) satisfying

S(x), I(x), R(x) >0 forallx €.

In particular, the steady-state solution (S, I, R) solves the elliptic system associated with (2.1) in the classical sense, and
infection persists uniformly in space. Consequently, whenever Ry > 1, the disease persists and the disease-free equilibrium
loses its stability.

Sketch of proof. The proof relies on the method of sub- and supersolutions combined with monotone iteration (see,
e.g., Cantrell and Cosner [15]]). Let ¢ denote the positive eigenfunction of the linearized infected operator associated
with the principal eigenvalue corresponding to Ry > 1. Then I = ¢ with ¢ > 0 sufficiently small defines a positive
subsolution for the infected equation. Choosing S = S* (the disease-free susceptible distribution) and R = 0 completes
a subsolution triple. A large constant triple (S ax, Imax, Rmax) S€TVes as a supersolution. Standard monotone iteration
between these ordered bounds yields a fixed point that solves the steady-state system. Elliptic regularity ensures that
the resulting steady state is smooth and strictly positive. O

5.1 Properties

The endemic equilibrium enjoys several structural properties that reflect its biological and mathematical significance:

Strict positivity: S*(x), I*(z), R*(z) > 0 forall z € Q.

Boundedness: the total equilibrium population satisfies

S*(x)+I"(x) + R*(z) <

Dependence on parameters: the equilibrium E* depends smoothly on the model parameters, as follows from
the implicit function theorem.

e Nonuniqueness: uniqueness of the endemic equilibrium is not guaranteed in general; it depends on the non-
linear structure of the incidence function 3(z, S, I).

These properties underline the biological relevance of E* as a feasible and persistent steady state of the system in
the supercritical regime.

5.2 Local Stability

Theorem 5.2 (Local stability of the endemic equilibrium). Assume Ry > 1 and that an endemic equilibrium E* =
(8*,I*, R*) exists. Then E* is locally asymptotically stable.
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Proof. Let us consider small perturbations around the endemic equilibrium,
s=8-8* i=1-I", r=R-—R"

and linearize system (2.1)). The linearized system can be written as

S S
T T
where the Jacobian operator J(E*) is
dsA = (u+ 0sp) -8 w
J(E7) = 9sp diA = (p+v—01f) 0
0 v drA — (1 +w)

(8*,I*,R*)

The Laplacian with Neumann boundary conditions has compact resolvent, and the multiplication operators are
bounded. Therefore, J(E*) has compact resolvent on L?(2)3, and its spectrum consists of isolated eigenvalues of
finite multiplicity.

Ignoring diffusion, the corresponding ODE Jacobian has all eigenvalues with negative real part whenever E* exists.
This can be verified rigorously using the Routh-Hurwitz criteria, which guarantee that all roots of the characteristic
polynomial of the 3 x 3 Jacobian have negative real parts. The diffusion terms dx A, being negative semi-definite, do
not destabilize the system.

Hence all eigenvalues of J(E*) satisfy ®(\) < 0, and the semigroup generated by J(E*) decays exponentially:
et/ ED| < Met, >0,
for some constants M, « > 0. Consequently, small perturbations around E* decay exponentially, proving that the

endemic equilibrium is locally asymptotically stable. O

5.3 Global Stability

To establish global stability, we construct a suitable Lyapunov functional.

Theorem 5.3 (Global stability of the endemic equilibrium). Assume Ry > 1 and that an endemic equilibrium E* exists.
Then, E* is globally asymptotically stable in the admissible region.

Sketch of proof. Consider the Lyapunov functional

R
R*

V@Lm:/

Q((SfS*fS*lng*

H%Ifﬁglﬂn%%HRfRﬁamhl))m.
The functional V' is nonnegative and vanishes only at the equilibrium E*. Differentiating V' along trajectories of
system (2.1) and applying the equilibrium relations yields V < 0, with equality if and only if (S, I, R) = (S*, I*, R*).

By LaSalle’s invariance principle, every solution converges to E*, which proves global asymptotic stability. O
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5.4 Remarks on the Endemic Regime

The endemic equilibrium is strictly positive, depends continuously on parameters, and persists whenever Ry > 1. Its
existence guarantees the persistence of infection and marks the transition from disease extinction to long-term coexis-
tence. However, multiple endemic states may occur depending on the nonlinearities of 5 and the spatial heterogeneity
of parameters.

Detailed argument. Consider the Lyapunov functional

V(S,I,R):/(S—S* S g +I-I"-I"Ink +R— R — R*
Q

}g)dx.

It is nonnegative and vanishes only at E*. Differentiating V' along solutions of (2.1I)) yields

- :/Q((li%*>ats+ (1-5)our+ (1- %) aR) dr

Step 1: Diffusion contributions. For the susceptible component,

« S*
S _ 2

using integration by parts and Neumann boundary conditions. Similarly,

/Q (1 - %)dIAIdx = —d; /Q %Wﬂzdx,
A

Thus, the diffusion part is nonpositive.

|VR|? dz.

2 )drAR dz = —dR/ =

Step 2: Reaction contributions. Substituting the reaction terms gives

WS, LR) = (1= 5 ) (A= 8- pS+wR)+ (1= ) (B (utnD) + (1= ) (1 = (u+w)R).

Hence
V:_/ (dsf|v5|2+df IVI|* + dr 2| VR )dw+/ v(S,1, R) dz.
I Q

Step 3: Use of equilibrium relations. Since (S*, I'*, R*) satisfies the steady-state equations
A=p*"—puS*+wR*=0, B*—(u+)I*=0, ~I"—(u+w)R* =0,

all constant terms cancel in ¥ (S, I, R). Rearranging, one obtains ¥ (S, I, R) < 0, with equality if and only if (S, I, R) =
(S*,I*, R*).

Step 4: Conclusion. Therefore, V(¢) < 0, with equality only at E*. By LaSalle’s invariance principle, every trajectory
converges to E*. Hence, the endemic equilibrium is globally asymptotically stable. O
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6 Discussion of Results

The theoretical analysis established that the basic reproduction number Ry acts as the sharp threshold parameter of
the system. When R, < 1, the disease-free equilibrium Ej is globally stable, while for Ry > 1 the system admits an
endemic equilibrium E* that is both locally and globally attractive.

Numerical simulations support these analytical results. For Ry < 1, the infected population I(¢) decreases monoton-
ically to zero, and solutions converge to the disease-free state (Figure[I)). When R, > 1, trajectories approach a strictly
positive endemic equilibrium E* = (S*,I*, R*) (Figure [2| left panel). The Lyapunov functional V' (¢) (right panel)
decreases sharply in the early phase, then exhibits a transient oscillation due to spatial diffusion and discretization
effects, before stabilizing near zero as the system converges to E*. This confirms the analytical prediction of global
stability in the supercritical regime.

Dynamics for Rg < 1: Convergence to DFE

1.0 A —— Infected population /(t)

0.8 1

0.6

0.4

0.2 4

0.0

Time

Figure 1: Dynamics for Ry < 1: the horizontal axis represents time (days), while the vertical axis shows the infected population
size. The infection dies out and the solution converges to the disease-free equilibrium.

g e ey - e et

1.0 —— Lyapunov functional Vv(t)
1.0
0.8 1
0.8 1
0.6
0.6 =
0.4 1
0.4 1
0.2
—— Infected /(t)
o24 £+ L Endemic level /* 0.0 1
0 10 20 30 40 50 0 10 20 30 40 50

Figure 2: Dynamics for Ry > 1: the horizontal axis represents time (days), while the vertical axis shows the infected population size.
(Left) convergence to the endemic equilibrium. (Right) evolution of the Lyapunov functional V' (¢) showing transient oscillations
before stabilization.

164



Research Paper

| Journal of Mathematical Epidemiology, 1(2) (2026), 154-166. Open Access

ISSN: 3108-4052

7 Conclusion

This work presented a unified analysis of a reaction—-diffusion SIRS model with general incidence. We established well-
posedness, threshold dynamics, and the global stability of the endemic equilibrium. Numerical simulations confirmed
the theoretical predictions and the sharp threshold role of Ry.

Beyond the mathematical contribution, the analysis highlights how rigorous tools can clarify epidemiological mecha-
nisms such as persistence, extinction, and the impact of spatial heterogeneity. These insights may support the design of
control strategies and motivate extensions of the model to include vaccination, stochastic effects, or delays for greater
realism.

Declarations

Author’s Contributions: The author, contributed fully to this manuscript in theoretical development, analysis, and
writing.

Conflict of Interest Disclosure: The author declares that there are no financial interests or personal relationships that
could be perceived as influencing the research presented in this paper.

Availability of Data and Materials: All data and materials used in this study are included in the manuscript. Addi-
tional simulation codes or figures are available from the author upon reasonable request.

Funding: No funding was received for this manuscript.
ORCIDs
Menad Mohamed |2/ https://orcid.org/0000-0002-3260-1199

References

[1] M. F. Ansori, A Discrete-time Mathematical Model of Smoking Dynamics with Two Sub-populations of Smokers,
Journal of Mathematical Epidemiology, 1(1), 12-27. https://doi.org/10.64891/jome.3

[2] M. B. Almatrafi, Solitary Wave Solutions to a Fractional-Order Fokas Equation via the Improved Modified Extended
Tanh-Function Approach, Mathematics, 13(1), (2025), 109. https://doi.org/10.3390/math13010109 https://
doi.org/10.3390/math13010109

[3] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic repro-
duction ratio R 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology,
28(4), (1990) 365-382.

[4] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compart-
mental models of disease transmission, Mathematical Biosciences, 180(1-2), (2002), 29-48.

[5] A. Korobeinikov and P. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models
with nonlinear incidence, (2004).

[6] Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM
Journal on Applied Mathematics, 73(4), (2013), 1513-1532. https://doi.org/10.1137/120876642

[7]1 M. B. Almatrafi, Abundant traveling wave and numerical solutions for Novikov-Veselov system with their stability
and accuracy, Applicable Analysis, 102(8), (2023), 2389-2402. https://doi.org/10.1080/00036811.2022.
2027381

165


https://orcid.org/0000-0002-3260-1199
https://orcid.org/0000-0002-3260-1199
https://doi.org/10.64891/jome.3
https://doi.org/10.3390/math13010109
https://doi.org/10.3390/math13010109
https://doi.org/10.1137/120876642
https://doi.org/10.1080/00036811.2022.2027381
https://doi.org/10.1080/00036811.2022.2027381

Research Paper

Journal of Mathematical Epidemiology, 1(2) (2026), 154-166. Open Access

ISSN: 3108-4052

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

E. Avila-Vales, G. E. Garcia-Almeida, and A. G. C. Pérez, Analysis of a diffusive SIR epidemic model with saturated
incidence and permanent immunity, Applied Mathematics Letters, 104, (2020), 106287.

M. B. Almatrafi, Solitary Wave Solutions to a Fractional Model Using the Improved Modified Extended Tanh-Function
Method, Fractal Fract., 7(3), (2023), 252. https://doi.org/10.3390/fractalfract7030252

M. B. Almatrafi, Construction of closed form soliton solutions to the space-time fractional symmetric regularized
long wave equation using two reliable methods, Fractals, 31(10), (2023), 2340160. https://doi.org/10.1142/
S50218348X23401606

M. Berkal and M. B. Almatrafi, Bifurcation and stability of two-dimensional activator-inhibitor model with
fractional-order derivative, Fractal Fract. 7, (2023), 344. https://doi.org/10.3390/fractalfract7050344

M. Almatrafi, M. Alzubaidi, and M. Berkal, Bifurcation analysis, phase portrait, and certain types of solutions to
the space-time fractional Sharma-Tasso-Olver equation using reliable methods, J. Appl. Math. Comput., 71, (2025),
6989-7010. https://doi.org/10.1007/512190-0256-02571-4

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer: New York,
1983.

H. Amann, Linear and Quasilinear Parabolic Problems. Volume I: Abstract Linear Theory, Birkhduser: Boston,
1995.

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2003.

L. J. Allen, B. M. Bolker, Y. Lou, and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic
patch model, SIAM Journal on Applied Mathematics, 67(5), (2007), 1283-1309. https://doi.org/10.1137/
060672522

166


https://doi.org/10.3390/fractalfract7030252
https://doi.org/10.1142/S0218348X23401606
https://doi.org/10.1142/S0218348X23401606
https://doi.org/10.3390/fractalfract7050344
https://doi.org/10.1007/s12190-025-02571-4
https://doi.org/10.1137/060672522
https://doi.org/10.1137/060672522

	Introduction
	The Model and Functional Setting
	Well-Posedness of the Model
	Existence and Uniqueness via the Lumer–Phillips Theorem
	Regularity of Solutions
	Positivity and Boundedness

	Threshold Dynamics
	Disease-free equilibrium and linearization
	Next-generation operator and R0
	Stability of the DFE
	Variational characterization (mass-action case)

	Endemic Equilibrium: Existence, Properties, and Stability
	Properties
	Local Stability
	Global Stability
	Remarks on the Endemic Regime

	Discussion of Results
	Conclusion

