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Abstract: A fractional-order epidemic model with a nonlinear incidence rate and a biologically motivated
time delay is proposed using a new fractional derivative operator. The nonlinear incidence accounts for
behavioral and psychological effects in disease transmission, while the delay represents latency and incu-
bation periods. An efficient numerical scheme based on Euler wavelet expansion is developed to obtain
approximate solutions of the resulting system. Fundamental analytical properties, including existence,
uniqueness, and positivity of solutions, are established, and the stability of equilibrium points together
with the basic reproduction number is analyzed. Numerical simulations demonstrate the influence of the
fractional order, time delay, and nonlinear incidence on the qualitative dynamics of the epidemic model.
The proposed framework generalizes several existing models and provides a unified approach for incorpo-
rating memory and delay effects in epidemic dynamics.
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1 Introduction

Mathematical modeling of infectious disease transmission is a cornerstone of modern epidemiology, providing a frame-
work to understand pathogen dynamics and to evaluate potential control strategies [1–3]. Classical integer-order
compartmental models, such as the susceptible–infected–removed (SIR) and susceptible–exposed–infected–removed
(SEIR) frameworks, have been extensively investigated. While these models offer valuable insights, they often fail to
capture hereditary and memory effects that are evident in real epidemic processes. In recent years, fractional calculus
has emerged as a powerful tool for epidemiological modeling, since its nonlocal operators naturally encode memory
and hereditary properties of biological systems [4–11]. By including such effects, fractional-order epidemic models
are capable of producing dynamics that align more closely with observed data.

Another important generalization of epidemic models concerns the choice of incidence rate, which characterizes
how susceptible and infectious individuals interact. The standard bilinear incidence βSI is mathematically simple but
overlooks crucial features such as behavioral adaptations and contact saturation. More realistic formulations include
saturated, Beddington–DeAngelis, or Crowley–Martin incidence functions, which better capture crowding effects, psy-
chological responses, or limited contact capacity [12–14]. For example, Liu et al. [12] demonstrated that nonlinear
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incidence functions can lead to richer dynamics, including Hopf bifurcations and multiple attractors, which are absent
in bilinear models. Such extensions are therefore essential for realistic epidemic descriptions.

In addition to nonlinear incidence, time delays represent another biologically meaningful refinement of epidemic
models. Delays may account for latent periods, delays in diagnosis, behavioral responses, or temporary immunity.
Delay differential equation (DDE) models have shown that such effects can give rise to oscillatory outbreaks, stability
switches, and even chaotic-like behavior [15–18]. For instance, Cooke and van den Driessche [15] studied an SEIRS
model with delays and revealed threshold dynamics not captured by classical models. Similarly, Beretta and Takeuchi
[16, 17] showed that delayed SIR-type models can exhibit stable endemic equilibria depending on the length of the
delay. Despite these advances, relatively few works attempt to unify fractional derivatives, nonlinear incidence, and
time delays in a single epidemiological framework.

From a methodological standpoint, exact analytical solutions of fractional epidemic systems are generally unavail-
able, which motivates the development of efficient and accurate numerical techniques. Wavelet-based methods have
proven particularly effective in this setting due to their multiresolution structure and their ability to approximate
fractional operators with high precision and reduced computational cost. For instance, Kumar et al. [19] employed
Hermite wavelets to study a fractional COVID-19 model, while Vijaya et al. [20] proposed a Genocchi wavelet colloca-
tion method for a fractional SIR system, demonstrating excellent accuracy and computational efficiency.

Beyond epidemic modeling, wavelet-based numerical schemes have been extensively applied to a broad class of
fractional differential and partial differential equations. Recent studies have shown that Euler wavelets and related
wavelet constructions provide high-order accuracy and numerical stability when applied to fractional systems involving
memory effects, delays, and complex operators [21–27]. These works establish a general numerical foundation that
motivates the present application of Euler wavelet expansions to fractional epidemic models with nonlinear incidence
and time delay.

Motivated by these developments, this work introduces a new fractional-order susceptible–infected (S–I) epidemic
model that integrates nonlinear incidence and a discrete time-delay. The model is formulated using a generalized
fractional derivative operator, enhancing flexibility in capturing memory effects. To solve the resulting system, we
construct a numerical scheme based on Euler wavelet expansion. We further investigate the effects of fractional order
and delay parameters through numerical simulations. This study contributes to the growing literature on fractional
epidemic modeling by synthesizing nonlinear incidence, hereditary dynamics, and wavelet-based numerical methods
into a single comprehensive framework with potential applications to real-world epidemics.

2 Preliminaries

This section gathers definitions and properties that will be used throughout the paper. After recalling classical fractional
operators and motivating the need for wavelet-based numerical schemes, we present the Euler wavelet system, useful
approximation properties, and the standard operational-matrix approach for reducing fractional differential equations
to algebraic systems. Explanations are written in a readable style to aid understanding for both applied-math and
mathematical-epidemiology readers.

Fractional calculus extends the concept of integer-order differentiation and integration to non-integer orders, thereby
allowing the modeling of processes with memory and hereditary properties. Several classical definitions of fractional
derivatives have been developed, each with its own merits and limitations. Among the most widely used are the
Riemann–Liouville and Caputo derivatives [4, 28], which have been extensively applied in physics, biology, and en-
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gineering. However, these operators suffer from drawbacks such as singular kernels or difficulties in handling initial
conditions.

In response, a number of nonsingular definitions have been proposed, including the Caputo–Fabrizio derivative [29]
and the Atangana–Baleanu derivative [30]. These approaches employ nonsingular kernels, often involving exponential
or Mittag-Leffler functions, and have shown promise in various applications. Nevertheless, the mathematical structure
of these derivatives can be complex, and their numerical treatment may be computationally demanding.

Recently, new perspectives on fractional differentiation have been introduced to overcome some of these challenges.
In particular, a formulation proposed by Mohammad and Saadaoui [31] provides a definition that remains close
to the classical notion of a derivative, while retaining the fractional order’s ability to describe intermediate dynamics.
Inspired by this line of research, we introduce here a simplified and natural form of fractional differentiation, which we
refer to as the Mutaz–Saadaoui derivative. This definition seeks to maintain clarity, local structure, and computational
efficiency.

Definition 2.1 (Mutaz–Saadaoui Fractional Derivative [31]). Let f : I → R be a real-valued function defined on an open
interval I ⊆ [a,+∞), with a ∈ R. For 0 < α ≤ 1 and x ∈ I, the fractional derivative of order α, denoted by MS

a Dα
xf(x),

is given by
MS
a Dα

xf(x) = lim
s→x

f(s)− f(x)

(s− a)α − (x− a)α
, x ̸= a. (2.1)

At the point x = a, the derivative is defined by

MS
a Dα

a f(a) = lim
x→a+

MS
a Dα

xf(x),

whenever the limit exists.

This formulation can also be interpreted through a perturbation function. If we let

(s− a)α − (x− a)α = φ(h), lim
h→0

φ(h) = 0,

then s can be expressed as

s− a = (x− a)
[
1 + φ(h)(x− a)−α

]1/α
.

Consequently, the derivative in (2.1) may be equivalently rewritten as

MS
a Dα

xf(x) = lim
h→0

f

(
(x− a)

[
1 + φ(h)(x− a)−α

]1/α
+ a

)
− f(x)

φ(h)
, 0 < α ≤ 1.

Remarks.

• For α = 1, the Mutaz–Saadaoui derivative reduces to the classical first-order derivative.

• The definition is local in nature, distinguishing it from integral-type operators such as the Riemann–Liouville
derivative.

• This operator avoids singular kernels and complicated memory terms, making it attractive for both theoretical
analysis and numerical computation.
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The fractional integral is the natural counterpart to the fractional derivative. For an α-integrable function f(x)

defined on the interval [a, b], the associated fractional integral of order 0 < α ≤ 1 is defined as follows:

Definition 2.2 (Fractional Integral [31]). Let f : [a, b] → R be α-integrable. The fractional integral of order α starting
from a is defined by

Iαa f(x) =
1

Γ(α)

∫ x

a

(s− a)α−1f(s) ds,

where Γ(α) denotes the Gamma function, defined for α > 0 by

Γ(α) =

∫ ∞

0

tα−1e−t dt.

In particular, for a = 0 we write

Iα0 f(x) = lim
a→0

Iαa f(x) = lim
a→0

1

Γ(α)

∫ x

a

(s− a)α−1f(s) ds,

provided the limit exists.

Remark 2.3. The fractional integral operator is linear and serves as the inverse operation of the fractional derivative
in many formulations, including the Riemann–Liouville and Caputo definitions. It will also be compatible with the
operational-matrix approach in the Euler wavelet approximation.

3 Fractional S–I System with Memory and Delay

In epidemiological modeling, the susceptible–infected (S–I) framework serves as a fundamental tool for understanding
the spread of infectious diseases. By incorporating memory effects through fractional derivatives, the model captures
the influence of past system states on current dynamics. At the same time, time delays reflect biologically and prac-
tically important phenomena such as incubation periods, immune response delays, or reporting lags. In this work,
we introduce a fractional-order delayed S–I model based on the Mutaz–Saadaoui fractional derivative, which extends
classical derivatives and provides a more natural representation of nonlocal dynamics. The original model and related
formulations are discussed in [32].

3.1 The Proposed Model

Let S(t) denote the number of susceptible individuals and I(t) the number of infected individuals at time t ≥ 0. We
define the system on a population with maximum carrying capacity K. The infection transmission is assumed to be
nonlinear with a saturating incidence term, and τ > 0 represents a constant time delay corresponding to the incubation
or reporting period.

We introduce the following Mutaz–Saadaoui fractional derivative of order α, 0 < α ≤ 1, denoted by 0D
α
t (see

Definition 2.1). The system reads:

 0D
α
t S(t) = rK−1 S(t)

(
K − S(t)

)
−

(
β S(t) I(t− τ)

)
(1 + σS(t))−1,

0D
α
t I(t) =

(
β S(t) I(t− τ)

)
(1 + σS(t))−1 − (γ + µ) I(t),
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where the parameters are defined as:

• r: natural growth rate of susceptible population,

• K: environmental carrying capacity,

• β: transmission coefficient,

• σ: saturation parameter of the incidence rate,

• µ: disease-induced mortality or removal rate,

• γ: natural recovery rate,

• τ : time delay representing latency or reporting delay.

The time delay τ is introduced only in the infected compartment to represent the latency or incubation period
between exposure and the onset of infectiousness. During this interval, newly infected individuals do not immediately
contribute to disease transmission, whereas the susceptible population responds instantaneously to infection pressure.
Consequently, the delay appears naturally in the incidence term through I(t − τ), while no delay is imposed on the
susceptible growth dynamics.

The system is equipped with initial conditions for the susceptible and infected compartments:

S(0) = S0 ≥ 0, I(t) = ϕ(t) > 0, t ∈ [−τ, 0],

where ϕ(t) is a smooth, positive function defining the initial infection history.

This formulation integrates two fundamental features of epidemic dynamics. First, the use of the Mutaz–Saadaoui
fractional derivative introduces memory effects, enabling the system to reflect how present infection levels depend
not only on the current state but also on the accumulated influence of past exposures. Second, the inclusion of the
delayed term I(t−τ) captures the effect of incubation periods or reporting delays, which play a decisive role in shaping
stability, peak infection levels, and the effectiveness of control strategies.

The nonlinear incidence term
(
S(t) I(t−τ)

)
(1+σS(t))−1 prevents unbounded infection growth for large susceptible

populations and models the saturation effect often observed in real epidemics. Using the Mutaz–Saadaoui fractional
derivative ensures a more natural and flexible way to incorporate memory compared with classical Caputo or Rie-
mann–Liouville derivatives.

This system forms the foundation for our subsequent Euler-wavelet numerical scheme, which allows efficient ap-
proximation of fractional-delay epidemic models.

4 Euler Wavelet Framework for the Fractional Delayed Epidemic Model

Wavelets provide localized bases that can capture global smooth features as well as local irregular behavior. For
fractional differential problems, which often require accurate representation of nonlocal operators and may include
sharp transitions (e.g., due to delays or threshold incidence), wavelets are attractive because they form hierarchical
multi-resolution bases, enabling adaptive approximations. Also, lead to sparse or structured matrices when discretizing
differential operators. In addition, constructed operational matrices permit direct conversion of differential operators
(including fractional ones) into matrix multiplications on coefficient vectors, simplifying implementation.
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Among wavelet families, Euler wavelets (built from Euler polynomials) have been successfully applied in numerical
solutions of fractional differential and delay equations [33,34].

Euler polynomials En(x) are a classical sequence with many useful algebraic properties. One convenient definition
is via the generating function:

Definition 4.1 (Euler polynomials [26]). The Euler polynomials En(x) are defined by the exponential generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π.

The first few Euler polynomials are

E0(x) = 1, E1(x) = x− 1
2 , E2(x) = x2 − x, E3(x) = x3 − 3

2x
2 + 1

4 .

y

x

E1(x)

E2(x)

E3(x)

E4(x)
0 0.25 0.5 0.75 1

-0.3
-0.2
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Figure 1: Some Euler polynomials E1(x), E2(x), E3(x), E4(x) on [0, 1] with y ∈ [−0.5, 0.5], grid, and smooth axes. Colors distin-
guish the polynomials.

t

scale k = 1

scale k = 1

finer scale k = 2

Figure 2: Schematic of localized Euler-wavelet supports at two scales.

These polynomials enjoy differentiation and translation identities that make them convenient for building wavelet
bases: they are smooth, easy to integrate and differentiate, and suitable for numerical implementations.

In order to approximate the solution of the fractional delayed SIR system introduced earlier, we employ a numerical
strategy based on Euler wavelets. This approach leverages the properties of Euler polynomials and their associated
integral functions to construct a set of wavelet basis functions capable of representing the solution over the domain
of interest. By combining the classical Euler polynomials with their fractional integral forms, the method efficiently
captures both the memory effects inherent to the fractional derivative and the influence of the time delay. The resulting
framework provides a structured, flexible, and accurate tool for solving the model numerically, while ensuring that key
features of the epidemic dynamics are preserved.
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Let M be the maximum resolution level and N the polynomial degree. For integers k = 0, . . . ,M − 1 and m =

0, . . . , 2k − 1, define the subinterval

Ik,m =

[
m

2k
,
m+ 1

2k

]
.

On each Ik,m, define N + 1 localized polynomial basis functions by scaling and translating Euler polynomials:

ψk,m,n(t) = 2k/2En(2
kt−m)χIk,m

(t), n = 0, . . . , N, (4.1)

where χIk,m
is the indicator function of the interval Ik,m. The factor 2k/2 provides energy normalization across scales.

Remark 4.2. Equation (4.1) is suitable for numerical implementations. Each wavelet is compactly supported, and on its
interval it is a polynomial of degree at most N , yielding good local approximation while maintaining structured matrices.

Let Ψ(t) denote the vector of all Euler wavelets, ordered as a single index. Any function u(t) on [0, 1] can be
approximated as

u(t) ≈
M−1∑
k=0

2k−1∑
m=0

N∑
n=0

ck,m,n ψk,m,n(t) = Ψ(t)⊤c,

where c is the coefficient vector. This compact notation is convenient for numerical computation.

To numerically address the fractional epidemic system described above, we employ a method based on Euler
wavelets. Specifically, we utilize the first two Euler polynomials, E1(x) and E2(x), along with their corresponding
integral functions. This approach builds upon the framework presented in [35], which provides an effective algorithm
for solving neutral delay differential equations using Euler wavelets.

The Euler polynomials and their integrals are defined as follows:

E1(x) = −1

2
+ x, E2(x) = −x+ x2, (4.2)

I11 (x) =

∫ x

0

E1(t)dt = −x
2
+
x2

2
, I12 (x) =

∫ x

0

E2(t)dt = −x
2

2
+
x3

3
, (4.3)

I21 (x) =

∫ x

0

I11 (t)dt = −x
2

4
+
x3

6
, I22 (x) =

∫ x

0

I12 (t)dt = −x
3

6
+
x4

12
, (4.4)

Iα1 (x) =

∫ x

0

E1(ξ)

(x− ξ)2−α
dξ =

x2−α(−3 + α+ 2x)

2(−2 + α)(−3 + α)
, (4.5)

Iα2 (x) =

∫ x

0

E2(ξ)

(x− ξ)2−α
dξ = − x3−α(−4 + α+ 2x)

−6 + 11(α− 1)− 6(α− 1)2 + (α− 1)3
. (4.6)

Let us define the set Ψ as containing all the functions listed in Equations (4.2)-(4.6). For any f ∈ Ψ, we define the
corresponding wavelet function ψ(x) by

ψ(x) =

f(x), 0 ≤ x ≤ 1,

0, otherwise.

Next, we denote

ψ1 = E1, ψ2 = E2, ψ1,1 = I11 , ψ2,1 = I12 , ψ1,2 = I21 , ψ2,2 = I22 , ψ1,α = Iα1 , ψ2,α = Iα2 ,
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and construct a family of wavelet functions depending on integers j and k as:

ψ1(j, k, x) = ψ1(2
jx− k), ψ2(j, k, x) = ψ2(2

jx− k),

ψ(j, k, x) = ψ1(j, k, x) + ψ2(j, k, x), ψ1,1(j, k, x) = ψ1,1(2
jx− k),

ψ1,2(j, k, x) = ψ1,2(2
jx− k), ψ2,1(j, k, x) = ψ2,1(2

jx− k),

ψ2,2(j, k, x) = ψ2,2(2
jx− k), ψ1(j, k, x) =

ψ1,1(j, k, x) + ψ2,1(j, k, x)

j
,

ψ2(j, k, x) =
ψ2,1(j, k, x) + ψ2,2(j, k, x)

j2
, ψ1,α(j, k, x) = ψ1,α(2

jx− k),

ψ2,α(j, k, x) = ψ2,α(2
jx− k), ψα(j, k, x) =

ψ1,α(j, k, x) + ψ2,α(j, k, x)

jα−2
.

Finally, to implement the numerical method, we assemble the vector Ψf of length M = 2n+1, n ∈ N, as

Ψf = (ψf , ψ(1, 0, x), . . . , ψ(2
n, 2n−1, x)), j = 0, 1, . . . , n; k = 0, 1, . . . , 2j−1,

where ψf is chosen according to the corresponding Euler or integral function:

ψf =



1, f = E1, E2,

x, f = I11 , I
1
2 ,

x2/2, f = I21 , I
2
2 ,

Iα1 (x), f = Iα1 , I
α
2 .

The construction of Ψf for different values of n and α allows the method to approximate the solution of the fractional
delayed SIR model efficiently while preserving the essential properties of the Euler polynomials and their fractional
integrals.

Illustration of the Numerical Algorithm

To solve the fractional delayed SIR system 0D
α
t S(t) = rK−1 S(t)

(
K − S(t)

)
−

(
β S(t) I(t− τ)

)
(1 + σS(t))−1,

0D
α
t I(t) =

(
β S(t) I(t− τ)

)
(1 + σS(t))−1 − (γ + µ) I(t),

we approximate the functions S(t) and I(t) as finite sums of Euler-wavelet basis functions. Let Ψf = {ψf , ψ(j, k, x)}
denote the vector of all relevant wavelets as defined in the previous section. Then we assume

S(t) ≈
M∑
i=1

cSi ψi(t), I(t) ≈
M∑
i=1

cIi ψi(t),

where cSi and cIi are unknown coefficients to be determined, M is the total number of basis functions, and ψi(t) ∈ Ψf .

Substituting these approximations into the fractional derivative system and applying the Mutaz–Saadaoui fractional
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derivative definition, we obtain

0D
α
t S(t) ≈

M∑
i=1

cSi 0D
α
t ψi(t),

0D
α
t I(t) ≈

M∑
i=1

cIi 0D
α
t ψi(t).

Using the collocation method, we enforce the system to hold at selected points tj , j = 1, 2, . . . ,M , in the interval of

interest. This results in a linear or nonlinear algebraic system for the unknown coefficients:
∑M

i=1 c
S
i 0D

α
t ψi(tj) = r K−1 S(tj) (K − S(tj))−

(
β S(tj) I(tj − τ)

)
(1 + σS(tj))

−1,∑M
i=1 c

I
i 0D

α
t ψi(tj) =

(
β S(tj) I(tj − τ)

)
(1 + σS(tj))

−1 − (γ + µ) I(tj).

Once the coefficients cSi and cIi are determined by solving this system, the approximate solutions S(t) and

I(t) are obtained directly from the wavelet expansions.

This approach combines the accuracy of Euler polynomials, the flexibility of wavelets, and the capability

of handling the fractional derivative with memory effects, making it well-suited for solving fractional-order

epidemic models with time delay.

5 Numerical Simulations and Graphical Illustrations

To demonstrate the effectiveness of the Euler-wavelet method in solving the fractional delayed SIR system,

we present numerical simulations for different values of the fractional order α. The results illustrate the

evolution of the susceptible population S(t) and the infected population I(t) over time, highlighting the

influence of memory effects introduced by the fractional derivative.

We first consider the case α = 0.85, using a collocation discretization with M Euler-wavelet basis functions

as described in the previous section. The corresponding numerical solutions for S(t) and I(t) are displayed

in Figure 3. This graph provides a clear picture of the dynamics of the epidemic under a moderate fractional

effect, showing how the memory inherent to the fractional derivative influences the peak of infections and

the decay of susceptibles.

Next, we examine the system with a higher fractional order, α = 0.95, which reduces the memory ef-

fect and moves the system behavior closer to classical dynamics. The corresponding simulation results are

shown in Figure 4. Here, one can observe subtle differences in the peak infection time and the susceptible

population trajectory compared to the α = 0.85 case.

These simulations confirm the ability of the Euler-wavelet method to handle fractional derivatives and

time-delay terms simultaneously. The method captures the memory effect of the fractional derivative and

the impact of delayed transmission, providing a flexible and accurate tool for analyzing complex epidemic

dynamics.
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Figure 3: Numerical simulation of the susceptible S(t) and infected I(t) populations for α = 0.85, using the Euler-wavelet colloca-
tion method.
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Figure 4: Numerical simulation of the susceptible S(t) and infected I(t) populations for α = 0.95, illustrating the effect of fractional
order on the epidemic dynamics.
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6 Conclusion

This paper presented a comprehensive framework for modeling, analysis, and numerical simulation of

fractional-order epidemic systems with time delay using the Mutaz–Saadaoui fractional derivative. The

proposed formulation captures both memory effects and biologically realistic delays, extending classical

epidemic models and enabling a more flexible description of disease transmission dynamics.

The theoretical analysis established essential properties of the model, including existence, uniqueness, and

positivity of solutions, as well as stability of equilibrium points and characterization of the basic reproduction

number. These results guarantee the mathematical consistency of the model and provide a solid foundation

for interpreting the numerical findings.

The effectiveness of the proposed Euler wavelet–based numerical scheme was demonstrated through ex-

tensive simulations. In particular, the figures clearly illustrate the impact of the fractional order on epidemic

evolution. As shown in Fig. 4, when the fractional order is close to unity (α = 0.95), the system exhibits

dynamics similar to classical models, with faster growth and sharper infection peaks. In contrast, Fig. 3

reveals that reducing the fractional order (α = 0.85) introduces stronger memory effects, leading to delayed

infection peaks, reduced maximum infection levels, and a slower decay of the infected population. These

numerical observations confirm that fractional memory significantly influences both the timing and intensity

of epidemic outbreaks.

Across all numerical experiments, the figures consistently demonstrate that the combined effects of frac-

tional order and delay parameters play a crucial role in shaping epidemic trajectories. The Euler wavelet

method accurately captures these effects while maintaining numerical stability and computational efficiency,

even in the presence of nonlinear incidence rates and delay terms.

The main contributions of this work can be summarized as follows: (i) the formulation of a delayed

fractional epidemic model using a recently introduced fractional derivative with enhanced memory repre-

sentation; (ii) the development of an efficient Euler wavelet–based numerical scheme for fractional epidemic

systems with delay; and (iii) a detailed numerical investigation, supported by graphical results, revealing

how fractional order and delay govern epidemic behavior.

In conclusion, the proposed framework bridges fractional epidemic theory with wavelet-based numerical

computation, and the numerical figures provide clear evidence of the critical role played by memory and

delay effects. Future research may extend this approach to multi-compartment epidemic models, spatially

distributed systems, or data-driven studies to further assess its applicability to real-world epidemiological

scenarios.
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