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Abstract: This study emphasis on transmission of Listeriosis from ready-to-eat foods employing a four
compartment defined as classses like susceptible S(t), Exposed E(t), Infected I(t) and Recovered R(t) of
non-linear model. Some RTE foods contains Listeria Which causes Listeriosis. we prosposed four compart-
mental model and analysis of equilibrium point, one is disease free equilibrium point(DFE) and Endemic
equlibrium points. Local stability of equilibrium established. The findings of this research work could
be used to provide basis in order to curb Listeriosis from ready-to-eat processed food items. This study
analyzes a mathematical model designed to understand the dynamics of listeriosis transmission through
ready-to-eat (RTE) foods. The model integrates factors such as cross-contamination in food processing en-
vironments and the role of contaminated food products in spreading the disease. It categorizes the system
into three equilibria: disease-free, Listeria-free, and endemic states. The analysis reveals that control-
ling listeriosis effectively requires the removal of contaminated food products and reducing environmental
contamination. The model’s findings support the development of optimal control strategies to mitigate
listeriosis outbreaks associated with RTE foods

Keywords: RTE Model;, Mathematical model; Basic reproduction number; Contaminated food products;
Listeria monocytogene.
AMS Math Codes: 34A07; 37N25; 92C50; 92C60; 92D30.

1 Introduction

Listeria monocytogenes, is often linked to the intake of ready-to-eat food with contamination which is major cause of
Listeriosis. The study of infectious disease dynamics has been a crucial area of research in epidemiology, aiming to
learn and control, the development of diseases within populations. This report is inspired by the work presented in
the paper titled A Mathematical Model and Optimal Control for Listeriosis Disease from Ready-to-Eat Food Products. The
paper formulates a mathematical model using the classic SIR (Susceptible-Infectious-Recovered) framework to describe
The causes and effects of listeriosis progression in the context of food products which are ready-to-eat. In the pursuit
of extending and enhancing the existing model, this project introduces an Exposed (E) compartment, transforming the
SIR model into an SEIR (Susceptible-Exposed-Infectious-Recovered) model. The addition of an Exposed compartment
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allows for the incorporation of an incubation period, capturing the time between exposure to the pathogen and the
onset of infectiousness. This modification aims to provide a more realistic representation of the disease dynamics,
considering the latent period during which individuals are exposed but not yet infectious. The primary objective of
this project is to introduce the Exposed compartment and then perform a stability analysis on the extended SEIR
model. Stability analysis is a crucial step in understanding the long-term behavior of the system and assessing the
effectiveness of control measures. By investigating the stability properties of the model, insights into the potential for
disease persistence or fade-out can be gained, guiding public health interventions and policy recommendations. The
subsequent sections of this report will delve into the details of the SEIR model and the stability analysis. Optimal
control strategies for preventing the spread of listeriosis include treatment, vaccination, education, media campaigns,
and the removal of contaminated food products. Treatment of infected humans and animals is found to be the most
effective intervention strategy. Vaccination and education of susceptible humans can also help in curbing the disease.
Media campaigns play a crucial role in raising awareness and reducing the exposure rate of humans by Listeria, leading
to fewer infections and disease eradication. In preventing the transmission of listeriosis, removal rate of contaminated
food products play very important . Implementing these control measures consistently and throughout the modeling
time is recommended for better efficacy in controlling and reducing the disease. Infectious human listeriosis is a
disease transmitted by animals too with a low occurrence rate but a high fatality rate among infected individuals
globally [1]. Developing tactics to counter any disease outbreak is necessary since the disease is a major public
health risk. When humans consume food products contaminated with Listeria or come into contact with the pathogen
Listeria monocytogenes (L. monocytogenes) as a result of poor hygiene, they can become sick with Listeriosis. [2]; [3].
Laboratory-verified cases give the active bodies in charge of food-borne disease surveillance the information required
for the diagnosis of human listeriosis, such as the World Health Organization [2]], the Centers for Disease Control
[4], and the National Institute of Communicable Disease (NICD) in South Africa. A bacterial culture obtained from
biomedical tissues or fluids, such as spinal fluid, the placenta, or blood, is typically used to diagnose listeriosis [4].
The incubation period is one to twenty-one days, however in certain cases, the diagnosis may not come about for up
to ninety days following the initial bacterial contact [4].

Headache, common flu-like symptoms, diarrhea, nausea, exhaustion, fever,loss of balance, stiff neck, convulsion
and muscle aches are some of the signs and symptoms of infection. Moreover, it can result in early births, stillbirths,
miscarriages, or potentially fatal infections for the fetus in pregnant women. Human listeria infections Almudena and
Payeras-Cifre can be effectively treated with the ampicillin, A-lactam antibiotic [|5]. Therefore, in case of an epidemic,
specific precautionary measures can be implemented to control the disease, such as not to use contaminated food
products, enforcing proper hygiene among manufacturing workers, and launching awareness campaigns. Offering a
theoretical framework that allows variables influencing the viruses’ control and transmission to be explicitly taken into
account, mathematical models enhance our knowledge of pathogen dynamics [|6]]. The goal of disease epidemic mod-
eling is to give strategies intended to stop the development of disease outbreaks a sound foundation. This comprises
realistic, ideal approaches in models that enable evaluation of the measures implemented by public health author-
ities. The transmission dynamics of listeriosis have recently been studied using mathematical models (for instance
in [[7H11]]). This study investigated the most effective management of listeriosis using a series of equations (mathe-
matical model) that explained the spread of the sickness in throughout human and animal populations.Additionally,
neither of these models take into account the scenario of the most effective approaches to prevent Listeriosis in hu-
mans by reducing the consumption of contaminated packaged foods food items.This work intends to establish and
assess an appropriate control model for listeriosis, disease resulting from packaged food products with contamination.
The best control measures to take are immune system stimulation, educational initiatives, and product recalls due to
contamination.

The population increase is one of the many reasons why man has failed to preserve the natural environment. There
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are numerous detrimental effects of environmental degradation on humanity. As a result, it is now impossible to stop
the spread of illness in society, particularly zoonotic illnesses like listeriosis [[12]]. The bacteria Listeria monocytogenes
(L. monocytogenes) in food can cause listeriosis. Listeria-contaminated food can be the source of L. monocytogenes
infections, but it can also be passed from mother to child through the skin or respiratory system during childbirth. L.
monocytogenes can cause early deliveries, stillbirths, miscarriages, and potentially fatal illnesses in unborn children.
L. monocytogenes is thought to be one of the main causes of bacterial meningitis in new borns. According to [13],
cirrhosis, inadequate immune suppression,renal failure and diabetes, are a few of the conditions known to be asso-
ciated with this illness. Payeras-Cifre and Ampicillin Almudena are examples of §-lactam antibiotics widely used for
the treatment of human listeria infections. Although in the incidence of an epidemic, a few precautions can be im-
plemented to contain the outbreak, including the recall of contaminated food products, the practice of good hygiene
by production workers, and the implementation of educational campaign programs. Because mathematical modeling
produces insightful qualitative data, it has been shown to be an effective technique for monitoring and managing the
propagation of numerous diseases. However, there exists a platform where the application of mathematical models
is possible even in the absence of reliable data for data fitting. In [[14]], correspondent created a non-fractional An
optimal control model is proposed to analyze the listeria infection dynamics in ready-to-eat food products (RTE) in
order to investigate the disease’s transmission dynamics. Their research suggested practical strategies to reduce the
occurrence of listeriosis. The study in [15]], Development of a system of model and analysis of equilibrium states and
the anthrax-listeriosis co-infected model is used for sensivity analysis. The study investigated a predictive modeling of
listeriosis caused by cross-infection of prepared food items, in [[16]. The findings indicated that reducing the quantity
of workers with the infection and eliminating contaminated products would lower the total level of food contami-
nation. A compartmental model of listeriosis including three humans and four animals was examined in the work
in [17].

Qualitative analysis is done on the model’s ability to maintain both endemic and disease-free equilibria as well as
the potential for both forward and reverse bifurcation. Sensitivity analysis was employed to investigate the impact of
altering the model parameters on the disease. The model includes education, immunization, and treatment of vulnera-
ble (human) populations as dynamic control variable with time dependency. They devised the optimal course of action
by further applying Pontryagin’s Maximum Principle to the problem of listeriosis control. The model is numerically
simulated, and the output is shown graphically and given a quantitative description. Prior to the work in [|17], the
authors in [[18]], focused on stability analysis when researching the listeria outbreaks in humans and animals. A deter-
ministic co-infection model was constructed to describe the relationship between listeriosis and meningitis in [[19]. We
look at the meningitis and listeriosis only, sub-models. Each co-infection model and sub-model is examined mathemat-
ically. Characteristics of infection codynamics and severity are determined using Latin-hypercube sampling. According
to numerical models, co-infections between listeriosis and meningitis are decreased when environmental pathogens
causing the illness are reduced and meningitis recovery rates are raised. Additionally, in [|20], created a mathematical
modeling of listeriosis that took awareness campaigns into account. Study [21] examined the relationship between
listeriosis and HIV/AIDS. They said the study will support the current endeavor to end the co-dynamics of HIV/AIDS
and Listeria. In order to effectively control anthrax [22]], conducted a sensitivity, bifurcation and study of modeling
of co-dynamics of anthrax-Listeriosis with optimal control. They found that integrating anthrax and Listeriosis in-
tervention techniques is required. In [23]], they created a uniform perturbation of homotopy approach is proposed
for the mathematical modeling of anthrax and listeriosis infections, taking to consideration the existing mathematical
models. Models and simulation results can both have analytical solutions found using the homotopy perturbation
technique (HPM). On the other hand, it is widely known that memory is crucial for the regulation of bodily functions
and diseases ( [24-36]]). Consequently, fractional calculus aids in the correct prediction of real-world phenomena by
capturing these memory features. Worldwide interest in calculus of fractional and the examples shows it has increased
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recently. Numerous operators with fractional having distinct characteristics were developed and used to in daily life
issues; refer to [[37141]]. A fractional dynamics approach is used to investigate the interactions between nonsingular
Mittag Leffler and coinfection of anthrax-listeriosis, this law was investigated by [42[]. In [43]], study investigated a
listeriosis disease model using a fractal-fractional derivative in the Atangana-Beleanu-Caputo derivative (ABC) and
Caputo . Researchers [44-50] found that the the Caputo fractal-fractional derivative fell short of ABC fractal-fractional
derivative.

The remainder of manuscript is structured as follows: the mathematical model and its underlying assumptions are
formulated in the following section. The features and analysis of the model without controls are presented in Section
3. The specification of acceptable optimal controls and the matching optimality system are provided in Section 4.
Section 5 presents the results of numerical simulation, and Section 6 wraps up the investigation.

2 Framework of the Mathematical Model

The theoretical framework of our model encapsulates three interconnected components: the population of human,
Processed edible food items, and the environmental presence of Listeria monocytogenes bacteria. Within the context
of epidemiology, we categorize the population of human four distinct classes at any given time t: (i)Susceptible to
infection(S(¢), (ii) Exposed but not yet infectious E(¢), (iii) infection I(t), (iv) Actively carrying the L. monocyto-
genes,(v)Those who have successfully recovered R(¢). This model is an expansion of the SEIR paradigm specifically
designed to better understand the dynamic interactions within this system. Expressed mathematically, (N(t)) is the
combined number of the four classes of the human population.

N@®)= S +E(t)+I(t)+R(t)

Non-negative constant parameters N, fin, An, pr, Vi, £m»> @, ftf and Ay are introduced. The parameter NV symbolizes
the entire population in the disease-free state, namely at disease-free equilibrium i.e. at disease-free equilibrium.
1y, represents the mortality rate . The death rate caused by diseases multiplies the respective rates of the I classes
S, E, R, and I respective rates of recovery due to death are u,S, unE, prR, and (up + 6)I respectively. The rate of
growth of susceptible humans is directly proportional to the number of the population of all the humans, 1, N (¢) and «
denotes the rate at which population get recovered from the disease. Susceptible individuals become infected through
the ingestion of contaminated food and exposure to Listeria in the environment. This infection rate, denoted as Ay,
is determined by the formula A, = F.wi + Lywe, where w; and wo represent the effective contact rates (exposure
to bacteria refer to the contacts that will lead to infections) for the humans in the susceptible compartment and L.
monocytogenes respectively. 0 < k,,, < 1 is carrying capacity of Listeria monocytogene whose net growth rate is r; and
denoted by L,,,. Food products can be classified into two groups: free from contamination that is uncontaminated F,,
and contaminated food products F., with F' = F, + F. section of total food items. Once susceptibles are infected,
they become infectious and move to compartment /. Infectives move to compartment R with a recovery rate «,
recovered persons can be susceptibility again at a rate p;,. We also have the following assumptions: (i) The bacteria
grow logistically such that: % =71y Ly - (1 — ﬁ—;) . (i) ps is productivity rate of pure food, the productivity
assumed to yield pure food (food without contamination). The contamination rate of pure food is Ay caused by the
bacterial environment and the contamination of food during the handling and distribution operations of the factory.
ie., Ay = woL,, +wsF,. where ws represents effective contact rate of the contamination of pure food items caused by
bacterium. (iii) All food under the control of removal rate . (iv) The rate at which individuals move from Exposed
to Infected compartment is v.. With the above parameters and assumptions, the pictorial representation of the model
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and mathematical is as follows and the model is represented by equations given below:

PnR
HpS HpE eyl unR
N L_I ApS I— YE _!_ al [ ]
< S % E - { R |
l —km
Lm+—mmm ,le km
H  uF
Fc —& FU —————
I g l‘,F‘“
upFu

Figure A: Schematic diagram of the model

The following set of ordinary differential equations governs our enhanced paradigm.

Cfi—f = pupN + ppn R — (Ap, + pn)S
% =ApS — (v +pn)E
% =vE — (a+ pn)I
W ol — (ot )R
dfl/—tm =7 Lm <1 — i—:)
f—tu = pfF = (Ap 4 pp) Fu
dd—F: =AsFy — pyF,

We substitute R(t) = N(t) — S(t) — E(t) — I(t) from (1), we convert equation (1) into a dimensionless system by
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establishing a certain condition s = %, e = %, = 4, lm, = £=, f, = ¢, and f. = £z The resulting equations are:

ds . ~
EZuh+ph(1—s—e—z)—(Ah+uh)s
de ~
A S
o = Ans = (v + e
di )
2 = e~ (atmn)i
dl 2.1)
me m(l =L
dt ’I"ll ( l )
dfu e
Yu _ (A 5
g =~ A ap)f
dfc e
— =A [ c

where /~\h = w1 fe + wal,, and A ¢ = waly, + wsfe. The system of equations (2.I) is non-negative initial conditions,
provided
$(0) > 0,e(0) > 0,i(0) > 0,1,,(0) > 0, £,(0) >0, f.(0) > 0. (2.2)

3 Model Analysis

3.1 Positivity and Boundedness of Solutions

Here, we demonstrate the condition of existence, non-negativeness, and boundedness of the solutions for equations
(2:1) within a specific region  contained in R}. The theorem given below allows to establish the positivity of the
solutions.

Theorem 3.1. All the solutions of the system (2.1)) is contained in the region Q) € RS, for the initial conditions [2:2)) in Q,
where Q is
Q={(s,e,islm, fo, fu) ERG :0<s+e+i<1,0< fu+f. <1, 0<1,<1,}

proof: The differential inequality provides the overall change in the human population as expressed by the initial two
equations of system (2.1)).

— <(I—s—e—i)(un+pn)
for value of n = s + 4 < 1 and using ®y = s + ¢ + i, which have

D4(0)

(I)O(t) =1- e(Hntpr)t

Given that ®((0) < 1, the upper bound of ®(¢) is 1, as tlim n(t). We now examine the bacterial population in the
— 00
environment, as represented by the equation:

dl,
dt

= Tllm(l - lm)
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Solving this first order equation, we get

1
In(t) = ————
( ) 1+ (I)l e~ Tt
where &, is a constant. Therefore, the value of [,,,(¢) ranges from [0, 1]. This signifies that the growth of the L.
monocytogene is bounded. Now, we shall consider the rate of change in quantity of total prepared food products both
contaminated and uncontaminated from the equations of system (2.1)), is

df
R 1—
o — =1
whose solution is given by
Do
f(t) - elup)t

where ®, is a constant and tlim f(t) tends to 1. So existence and boundedness of the solution be in domain 2 for
— 00
t > oo.

Theorem 3.2. For each non-negative parameter initial condition (sg, €9, 0, lmo, fuo, feo) as given in (2.2)), For t > 0, all
results of system (2.1), ((s(t),e(t),(t), lm(t), fu(t), fo(t)), are non-negative.

As time t increases indefinitely, for any ¢ > 0 the set (2.1)) of differential equation remain non-negative; that is, s(¢) > 0,
e(t) > 0,i(t) >0, fu(t) >0, ,,(t) > 0and f.(t) > 0.

3.2 Stability Analysis

Equating set (2.1) of equation to zero allows us for determining the stable states.

wn + pn(l—s* —e* —i") — (un + wi fe + walpy)s™ =0, 3.1)
(w1 fe + waly)s™ — (v + pun)e” =0, (3.2)

ve* — (a+ pp)i* = 0. (3.3)

(r)l (1= 15,) = 0, (3.4)

iy — el + wsfr o+ pg) =0, (3.5)

(walp, +wsf)fu — mefe = 0. (3.6)

We shall now solve these system of equations. Solving equation (3.4)), we get two solutions

I, =0 or

-
[

Substitute I, =0 into Equation (3:5), we solve for f and f; and we get,

mo
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* i * _ pr (1
f“ T pptwsfr and fC T w3 (f; 1)
Substitute the value of f;* into equation (3.6), we get

wapig fo — ppfa(wsfe +pg) =0

Solving this equation for f, we get

w3 — W
C*Q:O or ;‘1: w?’f

From our assumptions, we have defined . as the production rate of uncontaminated food. Now, we will define two

new parameters: ¥o = 2L and Ry = i—;

w3
M connotes the Basic reproduction number 9Ry. This suggests the average proportion of food items that can be
infected which gives rise to the occurrence of human Listeria infections. Substituting these two values into the formula
for fr, we get f = Vo(PRy —1)

cy1?

Theorem 3.3. There exist steady state f*c, whenever Ry > 1.

If iy, =0, then fi = 0. Therefore, f; =1, Ap = 0 and /~\f = 0. At the Disease-Free Equilibrium, the number of
individuals in the infected/infectious and exposed compartment is zero e* = i* = 0. This implies that there are no
actively infected individuals in the population, and the disease is not spreading. The entire population is typically in
the susceptible compartment s* = 1, indicating that everyone is susceptible to the disease but not currently infected.
the Disease-Free Equilibrium is determined by setting the equations governing the dynamics of the system to values
that result in zero infections. This often involves setting the initial conditions or specific parameters such that the rate
of infection becomes zero. The Disease-Free Equilibrium State will be given by
¢ = (8%, e, 1", 17 f;,fc*o) =(1,0,0,0,1,0)

mo?

3.2.1 Local Stability of ¢*

Theorem 3.4. Local asymtotically stability of the disease free system of model (2.1) provided r; > 0 and %y < 1 if not
unstable.

The linearized form of the set (2.1) of equations at €* is

(—(on+ An+pn)  —pn —pn 0 0 0
An —(v+ pn) 0 0 0 0
J(Qf*) _ 0 Y _(a+ﬂh> 0 0
0 0 0 r 0 0
0 0 0 0 —(Aj+pusp) O
L 0 0 0 0 A o
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Calculation of Eigenvalues:

AL =1y

A2 = —pf

Az = —7 — [in

A= —a— up

As = —fh — Ph

Ao = —pif +ws = pp(Ry — 1)

Analysis: The parameters «, v, r;, u¢, pp and pp, are all non-negative: (i) whenever Ry < 1, then A\¢ < 0. (ii)
whenever r; > 0, then all six of the characteristics root at ¢* will be negative. In this case, €* is Asymptotically Stable.
However, if r; > 0, then atleast one of the eigenvalues ), is positive irrespective of the value of &, and X\¢. Therefore,
steady state ¢* is Unstable.The biological meaning of r; < 0 is pointing to the declining the growth rate of Listeria
population, indicating a decline towards its maximum limit. This observation aligns with logistic growth dynamics.
We know that I}, =0 and f., = ¥y (R — 1), substituting these values into and (3.2), we get,

wh+pp(l1—s"—e" —i") — (Ag)s" =0
wiWo(Ry —1)s" — (v + pp)e” =0

Assuming Ay = pp + Ry — Dw1 Y. from (3.1) and (3.2) simultaneously for s* and e* by taking i* = 0, we get

o — (pn + pn)(Ry — Dwitho
Ar+ (v + pn + pr)wr Wo(Ry — 1)
* (pn + pn) (v + pn)

S =
A+ (v + pn + pr)w1 Wo(Ry — 1)

Assuming Ay = (v + pn) (pn + 1r)

3.2.2 Listerosis-Free State and Local Stability of ¢**

We shall denote a Listerosis-Free State (LFS) using &** = (s**, e™*,¢**, [X* | f** f**), where

’ "mg c1

o (1n + pr) (R — Dwitho

A+ (v + pn + pn) Ry — Dw Py
g% (v + #n) (i + pn)

Ar 4+ (v + pn 4 pn) Ry — Dwi ¥y
I =0

3k k 1

[ = T e

1+ Ry — DR

f&E = TRy - 1)

c1

with R, = ‘:—;
As we asserted previously in the existence of &*, the existence of &** is also subject to )iy > 1
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Theorem 3.5. The Listerois-Free State of model system (2.1) have local asymptotic stability when r; > 0 and Ry > 1,
and is unstable otherwise.

The linearized form of the set (2.1) of equations

[—Qo  —pn  —pn  —wys** 0 —wy 8**

wlfé‘* Q1 0 wos** 0 w8+
ey = | v —Qy 0 0 0
0 0 0 7 0 0

0 0 0 —wof —Q3 —wsf’

L 0 0 0 wof™  wsf Q4

We can proceed by ignoring the Infected compartment and reducing the matrix to

—Qo  —pn  —wes™ 0 —w 5
wljz** —Q1  wos™ 0 w1 8**
0 0 T 0 0
0 0 —wgﬁf* —Q3 —wgﬁf*

0 0 wgﬁj* wgfc** Q4

where

Qo = pn + pn + wi 2
Qr=7+pn

Q2 =a+pun

Qs = s +ws fr*

Qs =wsfy" — iy

From the above linearised matrix, we get the eigenvalues by finding the determinants of these two matrices :

—-Q3 *Wgﬁf—l)
wsWo(Ry — 1) W%f_l) T Hy

—Qo —Ph

A{E) = wiWo(Ry —1) —

and Jo(€**)=

The solutions of these can be derived from the solutions of the characteristic equations

A+ UA+G=0
A’ + A+ =0

3.7
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G=mn
G2 = —py

G = (n + pn)(a+ pn) + (v + pn + pn) (R — Dw1¥o
CG=a+2u,+ Ry — Dwi¥o + py
(pp(L+ Ry — DR )py +wz¥y

6 = 1+ Ry — DR,
Co = 2pp(14+ Ry — DRe) + w3y
6 1+ (R — DR,

Defined ¥; = ((1 + R.(Ry — 1))(Ry — 1)¥o — 1). The Routh-Hurwitz stability criterion states that the values of
(3,C4,Cs and (s will be positive when the value of Ry > 1. It can be concluded that quadratic equation have
those characteristic values which possess real part as negative. Therefore .J,(€**) will be asymptotatically stable if and
only if r;, > 0. If r, < 0, then we will get unstable state of Jo(E**). Therefore, we have that all the results of the
two quadratic equations or of the two quadratic equations or the characteristic root of the matrix of linearized form
which contains real part negative. As we have established before, all of the parameters are non-negative, therefore (s,
is always negative and if /Ry > 1, then (3, (4, (5, (s, will be positive. Therefore, &** exhibits local asymptotic stability
if and only if 71, is negative, meaning {; < 0, as all the characteristic root will be negative. However, if r; is positive,
meaning ¢; > 0, then ¢**, is in unstable steady state. Now, we shall consider the case of [;* = 1, substituting this
value in equation (3.5), we get,

f* _ Hr
wa + w3 fE + py

u

substituting this value into equation (3.6), we get C; f*?+Co f+C3 = 0. Where C; = w3us <0 Co = wopip— (D%f -1)
C3 = —wauy > 0. we can predict that C> < 0if Ry < 1 and C; < 0if R < 1. Therefore, regardless of the numerical
value of C}, the quadratic equation in f} will always have a positive characteristic root, say f and taking /¥ =1in
equations and (3.2), the equations transform to

fin + pr(1— " — e — i) — (up + w1 f +wa)s* =0
(Wi fi +w2)s™ — (v + pp)e” =0

Solving these two equations simultaneously for s* and e* by taking i* = 0, we get

o (v + p) (pn + p1)
py 4 y(w2 +wi fF) 4 pulo + pnl's
o (1 + pn) (w2 + w1 f)

1y + (w2 + wlf;) + pnlo + pnl'y

where Iy = (v 4+ ws + wy f7) and Ty = (pp + 7 + w2 + w1 f7)

3.3 Listerosis Endemic State ¢***

An endemic state of listeriosis refers to a persistent, often stable, presence of the disease within a population over an
extended period. Unlike the disease-free equilibrium, which represents a state where the infection has been eradicated,
an endemic state suggests that the infection continues to circulate within the population, and new cases may occur
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regularly. In the context of mathematical modeling and epidemiology, an endemic equilibrium is reached when the
number of new infections and recoveries balance out, leading to a stable level of disease prevalence. This equilibrium
is characterized by a non-zero, steady-state level of infected individuals in the population. The Listerosis Endemic
State (LES) is represented by E*** = (5% g*** 7

N s ~***) and given by

) »'mls Ju

g _ o) (Yt ) e (W2 w1 f5) (un + pn)

Ao+ pplo 4 s Az + prlo + prl'y
THkk THkx 1
ml — fu =

1+ﬁ+fc*%f

where Ay = p + y(w2 + w1 f7)

3.3.1 Local Stability of ¢***

Theorem 3.6. The set (2.1)) of equations exhibits local asymptotic stability for the Listerosis Endemic state when the value
of |t > 1, and unstable elsewhere.

The linearized form of the set (2.I)) of equations at &*** is

__QS —pn —pn _w2’§*** 0 —W1§***
Qe —Q7r 0 W s™ ™ 0 Wy §FF*
0 —Qs 0 0 0

-1

0
0 0 wafa™ @10 Q11

o
ja)

o O O O

where

Qs = pn + pn + wifr +ws
Qe‘:wLﬁ* + w2

Qr =7+ pn

Qs = a+ pp

Qo = 11y + w2 + w3 f;

Q1o = wa + wa f

Q11 = wafi* —

We will reduce the linearised matrix by removing the infected compartment and deal with the susceptible and exposed
compartment. The linearised matrix reduces to

_Q5 —pn — g S 0 — w5
Qe —Q7  wes™ 0 wys*
0 0 -7 0 0

0 0 _w%ﬁ** _QQ _wgﬁj**
0 0 wafa™ Qo Q11
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The eigenvalues of this matrix are ¢ = —r; and the solutions to the characteristic polynomials obtained from
Qs —pn given by A2 + ;A + €3 = 0, where
Qe —Qr

€ =7+2uh+ph+w1f:** + wo
€3 = pd + y(wa + wi ) + pr(y +wa + w1 f7) 4 pn(y + pr + wa + wr f2)

Both ¢, and e3 are always positive. The remaining eigenvalues are calculated from the determinant QQQ wg“
10 Q11
given by A? + ¢4 A + €5 = 0, where
65_w3+(fc u )+%f

€4 and €5 are positive iff fc* - fu*** > 0, i.e ¢4 and e5 are positive if the value of fc* is greater than f;j**. Based on the
Routh Hurwitz stability criterion, it may be predicted that all the eigenvalues or solutions of the quadratic equations
include negative real parts, similar to the previous case. The biological implication is that in order for the Listeriosis
epidemic to reach the Listeriosis Endemic State, there must be a lesser number of uncontaminated food products
compared to contaminated food products.

4 Computer and Numerical Simulations

In the corresponding sections, numerical simulations for the compartmental model are provided using the most rel-
evant and well-fitting parameter values. Every visual projection has been positioned, styled, and presented in an
eye-catching manner.
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25 It |1 20
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—F it | |

]
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B

30
20

. . " T — 0
0 5 10 15 20 25 30 35 40 45 50 Exposed (U] Susceptable

Fig. 1 Fig. 2

Fig.1 Represents the time series evaluation of population classes and Fig.2 Represents phase portrait of
susceptible, exposed and infected populations with the attributes of x;, = 0.1, = 0.0094, p;, = 0.09,r; =
0.40, w; = 0.0380,ws = 0.0020, w3 = 0.00050, py = 0.0076, y; = 0.0035, pty = 0.09, A, = 0.0056, Ay = 0.0036.
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Numerical Observations: From figl,it is observed that the proposed system is stable as time is increasing and phase
portrait of the population densities S(t), E(t) and I(¢) is available in fig 2. Also, it is noted that the fig 3 represents
the phase portrait of L. monocytogenes, food items with contamination and pure food products. i.e the growth rate of

w

0
'g 14
5 25
a 12F
= 2
o = -
b 1.5 4 g 10
g g
£ 1 E 8
E
8 05
s 6
© 0.l

10 b

15
5 10 Fas
5
0 o 0 . . . .
L. monocytogenes 0 5 10 15 20 P
Uncontaminated food products Exposed
Fig. 3 Fig. 4

Fig.3 represents the phase portrait of population classes L-Monocytogenes, uncontaminated food prod-
ucts,contaminated food products and Fig.4 represents the variation of infected populations with reference
to exposed populations with the attributes of u;, = 0.1, = 0.0094, p;, = 0.09, 7, = 0.40,w; = 0.0380, wy =
0.0020, w3 = 0.00050, py = 0.0076,~v1 = 0.0035, 1y = 0.09, A, = 0.0056, Ay = 0.0036.
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Contaminated food preducts
o
L. monocytogenas

05
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Fig. 5 Fig. 6

Fig.5 Represents the variation of uncontaminated food products with reference to the contaminated food
products and Fig.6 Represents the variation of infected populations with reference to L.monocytogenes with
the attributes of 1, = 0.1, = 0.0094, p, = 0.09,7; = 0.40,w; = 0.0380,wy = 0.0020,ws = 0.00050, j1; =
0.0076,71 = 0.0035, s1; = 0.09, A, = 0.0056, A; = 0.0036.
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L monocytogenes with reference to with contamination and pure food products. In other words the L. monocytogenes
growth rate in relation to contaminated and uncontaminated food items. From fig 4, it is identified that as exposed
population density increases, the infected population density is also increasing or It has been shown that the infected
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L. monocytogenes L. monocytogenes
Fig. 7 Fig. 8

Fig.7 Representing the variation of L.monocytogenes with reference to the contaminated food products and
Fig.8 Representing the variation of L.monocytogenes with reference to L.monocytogenes with the attributes
of up, = 0.1,a = 0.0094, p, = 0.09,7; = 0.40,w; = 0.0380,wz = 0.0020,w3 = 0.00050, p1; = 0.0076,7; =
0.0035, p1y = 0.09, A, = 0.0056, Ay = 0.0036.

Population Class - S(t)
Population Class - I{t)

Time Time

Fig. 9a Fig. 9b

Fig.9a Evaluation of population density using time series analysis of and Fig.9b Evaluation of popula-
tion density using time series analysis of I(t) as u; is increasing with the attributes of p;, = 0.1, =
0.0094, pp, = 0.09,7 = 0.40,w; = 0.0380,w2 = 0.0020,w3 = 0.00050, uy = 0.0076,71 = 0.0035, uy =
0.09, A\, = 0.0056, Ay = 0.0036.
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population density rises in tandem with the exposed population density. Similarly, when the density of uncontaminated
food products rises, density of contaminated food products is also raising from figure 5 under certain conditions like
environmental factors. i.e Under certain circumstances, such as environmental factors, the density of contaminated

30 T T T T T T T T T 40 T T
—wl=0.018 —wl = 0.018
w1 =0.098 w1=0.098 4
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0 5 10 15 20 25 30 35 40 45 50 35 40 45 50
Time Time
Fig. 10a Fig. 10b

Fig.10a Evaluation of population density using time series analysis of S(t) and Fig.10b Evaluation of pop-
ulation density using time series analysis of E(t) as w; is increasing with the attributes of y;, = 0.1,a =
0.0094, p, = 0.09,7; = 0.40,w; = 0.0380,wp = 0.0020,w3 = 0.00050, uf = 0.0076,v; = 0.0035, s =
0.09, A, = 0.0056, Ay = 0.0036.
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Fig.10c Evaluation of population density using time series analysis of I(t) and Fig.10d Evaluation of pop-
ulation density using time series analysis of F,(t) as w; is increasing with the attributes of y;, = 0.1, =
0.0094, pp, = 0.09,7 = 0.40,w; = 0.0380,w2 = 0.0020,w3 = 0.00050, uy = 0.0076,71 = 0.0035, uy =
0.09, A\, = 0.0056, Ay = 0.0036.
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food products rises in tandem with the rise in the density of uncontaminated food products (fig 5). As the density
of infected populations increasing, the density of population of L-monocytogenes is constant up to certain level of
14 units of time interval and then the density will rise up to peak level and then moves further based on controlling
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w2 = 0.028] |
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Fig. 11a

Fig.10e Evaluation of population density using time series analysis of F.(¢) as w; increasing and Fig.11a
Represents the time series evaluation of population class S(t) as w- is increasing with the attributes of

pp = 0.1, = 0.0094, pp = 0.09,7, = 0.40,w; = 0.0380,ws = 0.0020, w3 =

0.0035, py = 0.09, Ap, = 0.0056, Ay = 0.0036.
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Fig. 11c

Fig.11b Evaluation of population density using time series analysis of E(t) and Fig.11c Evaluation of pop-
ulation density using time series analysis of I(t), as wo increasing, with the attributes of u, = 0.1, =

0.0094, pr, = 0.09,7 = 0.40,w; = 0.0380,w2 = 0.0020,w3 = 0.00050, uy = 0.0076,71 = 0.0035, uy =

0.09, A\, = 0.0056, Ay = 0.0036.
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factors and is observed in fig 6. That is Fig 6 illustrates how the density of L-monocytogenes populations increases
in tandem with the density of infected populations and after reaching a peak level of density after a 14-unit time of
interval, the density rises further due to regulating mechanisms. The figs 7 and 8 illustrates that the growth rates
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Fig.11d Evaluation of population density using time series analysis of L,,(¢) andFig.11e Evaluation of pop-
ulation density using time series analysis of the population class F,(t), as wy increasing, with the attributes
of up = 0.1, = 0.0094, py, = 0.09,7; = 0.40,w; = 0.0380,wy = 0.0020,w3 = 0.00050, 1y = 0.0076,7; =
0.0035, p1y = 0.09, A, = 0.0056, Ay = 0.0036.
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Fig.11f Represents population class evaluation using time series analysis of F.(t) as w9 increases and Fig.12a
Represents population class evaluation using time series analysis of S(t) as ws is increasing with the at-
tributes of z;, = 0.1, = 0.0094, p5 = 0.09,7; = 0.40,w; = 0.0380,w = 0.0020,w3 = 0.00050, prf =
0.0076,71 = 0.0035, s1; = 0.09, Ay = 0.0056, A; = 0.0036.

69



Research Paper
Open Access
ISSN: 3108-4052

Journal of Mathematical Epidemiology, 1(1) (2025), 52-79.

of L monocytogenes are increasing from a certain point of time to another point of time, it is established that the
contaminated and uncontaminated food products respectively are rising at a time and up to certain density between
2.5 and 3 and then moves parallel to x-axis. i.e Figs 7 and 8 show how the growth rates of L monocytogenes increase
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Fig.12b Represents population class evaluation using time series analysis of E(t) and Fig.12c Represents
population class evaluation using time series analysis of I(t) as ws is increasing with the attributes of p; =
0.1,a = 0.0094, pj, = 0.09, 77 = 0.40,w; = 0.0380,ws = 0.0020,ws = 0.00050, 1y = 0.0076,~1 = 0.0035, y1; =
0.09, A\, = 0.0056, Ay = 0.0036.
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Fig.12d Represents population class evaluation using time series analysis of L,,(¢) and Fig.12e Represents
population class evaluation using time series analysis of F,(t) as ws is increasing with the attributes of
up = 0.1, = 0.0094, p;, = 0.09,7 = 0.40,w; = 0.0380,wz = 0.0020,w3 = 0.00050, uy = 0.0076,v; =
0.0035, uir = 0.09, A, = 0.0056, Af = 0.0036.
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over time. It is established that the contaminated and uncontaminated food products, respectively, rise at different
times and reach a specific density between 2.5 and 3, after which they move parallel to the x-axis.

Fig (9a) and Fig (9b) says that as the value of pj varies(increases) from 0.01 to 0.12, then the susceptible popu-
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Fig.12f Represents population class evaluation using time series analysis of F.(¢) as ws is increasing and
Fig.13a Represents population class evaluation using time series analysis of S(t), as p; increases, with the
attributes of y, = 0.1,a = 0.0094,p, = 0.09,7; = 0.40,w; = 0.0380,wy = 0.0020,w3 = 0.00050, p1y =
0.0076,71 = 0.0035, s1; = 0.09, A = 0.0056, A; = 0.0036.
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Fig.13b Represents the assessment of population class density using time series analysis of E(t) as pj, is
increasing and Fig.13c Represents the assessment of population class density using time series analysis of
I(t), as pp, increases, with the attributes of p;, = 0.1, = 0.0094, pp, = 0.09,7; = 0.40,w; = 0.0380,ws =
0.0020, w3 = 0.00050, 15 = 0.0076,~; = 0.0035, z1; = 0.09, A;, = 0.0056, X7 = 0.0036.
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lation class(S(t)) is increasing gradually and infectives(I(¢)) are rapidly decreasing as natural death rate yu;, follows
increasing trend. When py, varies or follows an increasing trend then the infectives(I(¢)) reduces, which says that
infection growth is at high intensity and leads to fatal condition quickly(due to various resistance powers exhibited by
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Fig.14a Represents the assessment of population class density using time series analysis of S(t), as « in-
creases, and Fig.14b Represents the time series evaluation of population density of E(t), as « increases, with
the attributes of zu, = 0.1, = 0.0094, p, = 0.09,7; = 0.40,w; = 0.0380,wy = 0.0020,ws = 0.00050, iy =
0.0076,v1 = 0.0035, s = 0.09, A, = 0.0056, Ay = 0.0036.
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Time
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Fig.15a Represents the assessment of population class density using time series analysis of L,,(t), as r;
increases, and Fig.15c Represents the assessment of population class density using time series analysis of
I(t), as r; increases, with the attributes of p;, = 0.1, = 0.0094, p, = 0.09,7;, = 0.40,w; = 0.0380,wy =
0.0020, w3 = 0.00050, 17 = 0.0076,~1 = 0.0035, s1; = 0.09, A, = 0.0056, A; = 0.0036.
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the population)based on the impact of infection.

Fig 10(a) and Fig 10(b) says that as the value of w; varies(increases) from 0.018 to 0.28, then the susceptible
population class(S(¢)) is increasing gradually and exposed class(E(t)) is varying increasing and decreasing and finally
decreasing. Fig 10(c) infectives(/(t)) are increasing gradually due to increasing trend in listeriosis infection rate w;
caused by contaminated food. Food can be contaminated by biological agents like bacteria, viruses, and molds, or
chemical agents like metals and pesticides.Food packing, storing and handling process also one of the cause to turn up
as agent to contaminate the food if they are not handled properly and not stored in hygienic environment. Infection
due to contaminated food can become fatal stage also, if not identified or treated properly. Fig 10(d) and Fig 10(e)
shows the Food classes which are uncontaminated F,, and contaminated F, respectively. As listeriosis infection rate w;
caused by contaminated food varies and follows an increasing trend obviously contaminated class F.. follows increasing
trend and uncontaminated class F;, follows decreasing trend as per variation in wy.

Fig 11(a) and Fig 11(b) says that as the value of w, varies(increases) from 0.001 to 0.028, then the susceptible
population class(S(t)) and exposed class(E(t)) are increasing gradually. Fig 11(c) infectives(I(¢)) are increasing
rapidly due to variation in contamination rate w- in food caused by L. Monocytogenes. Food contaminated due to L
Monocytogenes bacteria can leads to listeriosis disease sometimes, which can be life threatening also. Food can be
contaminated by L Monocytogenes bacteria, which can be spread and survive at very low temperatures and spreaded
more in refridgerated food. Food should be stored and handlded with proper care and hygienic environment. Infection
due to contaminated food can become fatal stage also, if not identified or treated properly. Fig 11(d) and Fig 11(e)
shows the variation in Food classes which are uncontaminated F, and contaminated F,. respectively for increasing
values of ws. As listeriosis infection rate wy caused by contaminated food varies and follows an increasing trend
obviously contaminated class F. follows increasing trend and uncontaminated class F;, follows decreasing trend as per
variation in ws.
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Fig.15e Represents the assessment of population class density using time series analysis of F,(t), as r;
increases, and Fig.15f Represents the assessment of population class density using time series analysis of
F.(t), as r; increases, with the attributes of u, = 0.1, = 0.0094, p, = 0.09,7; = 0.40,w; = 0.0380,ws =
0.0020, w3 = 0.00050, sz = 0.0076,~; = 0.0035, sy = 0.09, Ay, = 0.0056, A; = 0.0036.
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Fig 12(a) and Fig 12(b) says that as the value of wj varies(increases) from 0.0001 to 0.005, then the susceptible
population class(S(¢)) and exposed class(E(t)) are increasing gradually. Fig 12(c) infectives(I(¢)) are increasing
rapidly due to variation in food contamination rate w3 in uncontaminated food. Food contamination may be due to
L Monocytogenes bacteria, food storing and handling process and materials, unhygenic environment, pesticides and
over usage of chemicals like preservatives and artificial colours can leads to listeriosis disease sometimes, which can be
life threatening also. Fig 12(d) says that L. Monocytogenes bacteria class L,, is gradually increases as contamination
rate w3 in uncontaminated food follows increasing trend in variation. Which says that L. Monocytogenes bacteria plays
major role in food contamination. Food can be contaminated by L. Monocytogenes bacteria, which can be spread
and survive at very low temperatures and spreaded more in refridgerated food. Food should be stored and handlded
with proper care and hygienic environment. Infection due to contaminated food can become fatal stage also, if not
identified or treated properly. Fig 12(e) and Fig 12(f) shows the variation in Food classes which are uncontaminated
F, and contaminated F, respectively for increasing values of w3. As contaminated infection rate w3 caused by bacteria
or unhygienic environment or any biological or chemical agents can lead to an increasing trend in contaminated class
F, and uncontaminated class F,, also.

Fig 13(a) and Fig 13(b) says that as the value of pj,, varies(increases) from 0.003 to 0.05, then the susceptible pop-
ulation class(S(t)) and exposed class(F(t)) are increasing gradually. Fig 13(c) infectives(I(¢)) are increasing rapidly
due to variation in immunity rate p;. Food contamination may be due to L. Monocytogenes bacteria, food storing and
handling process and materials, unhygenic environment, pesticides and over usage of chemicals like preservatives and
artificial colours can leads to listeriosis disease sometimes, which can be life threatening also. Lost of immunity rate
pr, in population is due to presence of bacteria or infection due to food contamination or pollution or any other cause
which can reduce the immunity leads to increasing trend in S(¢), E(t) and I(t).

Fig 14(a) and Fig 14(b) says that as the value of « varies(increases) from 0.0034 to 0.0594, then the susceptible
population class(S(t)) and exposed class(E(t)) are decreasing gradually. Fig 14(c) infectives(I(t)) are decreasing
rapidly due to recovery rate «. Food contamination may be due to L. Monocytogenes bacteria, food storing and
handling process and materials, unhygenic environment, pesticides and over usage of chemicals like preservatives
and artificial colours can leads to listeriosis disease sometimes, which can be life threatening also. Recovery rate
in population is due to reduction in infection due to proper treatment or increasing values of immunity or hygienic
environment and hygienic food can leads to decresing trend in S(¢), E(t) and I(t).

Fig 15(a) and Fig 15(c) says that as the value of r; varies(increases) from 0.02 to 0.4, then the susceptible population
class(S(t)) and infected class(I(t)) are increasing rapidly. Presence of L Monocytogenes bacteria, food storing and
handling process and materials, unhygenic environment or pesticides can leads to food contamination and further
leads to literiosis disease. Fig 15(e) and Fig 15(f) shows the variation in Food classes which are uncontaminated
F,, and contaminated F, respectively for increasing values of r;. As net growth rate of L Monocytogenes r; due to
presence of bacteria or unhygienic environment or any biological or chemical agents can lead to an increasing trend
in contaminated class F,. and uncontaminated class F;, also.

Fig 16(c) and Fig 16(d) says that as the value of ;1y-removal rate of contaminated food varies(increases) from 0.01
to 0.2, then the infected population class(/(¢)) and L Monocytogenes bacteria class(L,,(t)) are decreasing gradually.
Presence of L. Monocytogenes bacteria, food storing and handling process and materials, unhygenic environment or
pesticides can leads to food contamination and further leads to literiosis disease. Inorder to reduce the infection
and disease spreading rapidly, treatment or removal of contaminated food is one of the measure to protect from the
disease. Fig 16(e) and Fig 16(f) shows the variation in Food classes which are uncontaminated F,, and contaminated
F, respectively for increasing values of ;1. As removal rate of contaminated food ps follows increasing trend, which
results in an decreasing trend in contaminated class F,. and increasing trend in uncontaminated class F,.
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5 Discussion and Concluding Remarks

This paper explores how Listeriosis spreads among people who eat ready-to-eat food. I have used a comprehensive
set of seven differential equations, including ways to control the spread. We found three stable states in the model,
and they depend on the level of food contamination. This contamination is crucial for deciding if the disease will
keep spreading or slow down. We assumed the number of people stays constant over time for simplicity, even though
this might not be true in real life. Our study suggests that bacteria from the environment has a small impact on the
epidemic, but we argue it could still be important. We used a simple way to describe how the bacteria grow, but we
mentioned that changes in the environment might affect this growth. Despite some limitations, our findings can help
assess the risk of contaminated food and figure out effective ways to control the spread of Listeria among people.
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