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Abstract: We analyze smoking dynamics with two sub-populations of smokers using a discrete-time mathe-
matical model with a standard difference scheme. We divide the smokers’ populations into beginners and
heavy smokers. The boundedness of the solution is obtained. The equilibrium stability is assessed through
the Jury stability conditions. We additionally present numerical simulations to validate the analytical re-
sults by giving several examples to depict the stability of all equilibriums. The sensitivity analysis of the
model’s parameters is performed to that can offer recommendations for regulators to reduce the number
of smokers.
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1. Introduction
Smoking continues to be one of the leading causes of preventable diseases and deaths worldwide, with significant

implications for public health and socioeconomic well-being [1]. The World Health Organization (WHO) reports that
tobacco use causes over 8 million deaths annually, with more than 80 % of smokers residing in low- and middle-
income countries where the burden of smoking-related illnesses is disproportionately high [2]. Smoking is strongly
associated with a range of serious health conditions, particularly lung cancer [3]. Despite decades of public health
campaigns, regulatory policies, and smoking cessation initiatives, the prevalence of smoking remains alarmingly high
in many regions, driven by factors such as nicotine addiction, cultural acceptance, and aggressive marketing by tobacco
companies [4, 1]. Smoking cigarettes and quitting are complicated behaviors influenced by a number of circumstances
[5].

Mathematical modeling has become a powerful tool for analyzing the complex dynamics of smoking within popula-
tions. Various studies have explored different aspects of smoking behavior and control strategies using mathematical
frameworks. Zhang et al. (2020) investigated a delayed quitting smoking model incorporating a harmonic mean type
and optimal legislative control strategies to minimize the number of smokers [6]. Similarly, Sofia et al. (2023) deve-
loped a nonlinear mathematical model to examine the impact of media awareness on reducing smoking transmission
from smokers to non-smokers [7]. Herdiana et al. (2022) proposed a mathematical model that highlights the effective-
ness of combined therapy-educational campaigns, counseling, and nicotine replacement therapy-in reducing smoking
prevalence in mixed populations of heavy and beginner smokers [8]. A simplified version of this model was further
analyzed in a subsequent study [9]. Zhang et al. (2024) explored a smoking epidemic model in both deterministic

11

https://orcid.org/0000-0002-4588-3885


Journal of Mathematical Epidemiology, 1(1), 11-25, (2025)
Research Paper

Open Access
ISSN: 0000-0000

and stochastic settings, demonstrating that effective smoking control requires accurate tracking of initial smoking po-
pulation sizes and the implementation of efficient intervention measures [10]. Han et al. (2025) extended this work
by applying the Black-Karasinski process to study the global dynamics of a stochastic smoking epidemic model [11].
Recent studies have also incorporated fractional mathematical models to improve long-term forecasting of smoking
trends, offering a more nuanced understanding of smoking dynamics over time [12, 13]. These studies highlight the
growing role of mathematical modeling in understanding smoking dynamics and designing effective public health
strategies.

Mathematical models enable researchers to simulate smoking-related behaviors. Continuous-time differential equa-
tions are used in the majority of mathematical models of smoking dynamics as mentioned above. However, in actual
situations, smoking behavior is frequently impacted by isolated incidents (e.g., policy changes, awareness campaigns,
and peer influence). Because it can more accurately depict these real-world, stepwise behavioral changes, a discrete-
time model is required. Discrete-time models, in particular, are effective in capturing the temporal evolution of smoking
dynamics over defined time periods. In this study, we propose a discrete-time mathematical model of smoking dynamics
based on the continuous model in [8, 9]. The model considers an interaction between beginners and heavy smokers.
By examining the stability and sensitivity of the model, we aim to provide insights into the mechanisms driving the
smoking prevalence and offer recommendations for mitigating the smoking epidemic.

2. The model and the boundedness of its solution
Ansori and Herdiana [9] studied the smoking dynamics of active smokers in a mixed population via the following

system of differential equations: 

dP

dt
= Λ− (αB + βS)P − µP + σB

dB

dt
= (αB + βS)P − δBS − (σ + µ)B

dS

dt
= δBS − µS

. (2.1)

All parameters are positive.

The explanation of the parameters is as follows. Parameter Λ (constant growth rate of potential smokers) represents
the rate at which new individuals enter the population as potential smokers. This could be due to birth rates, migration,
or individuals reaching an age where they are susceptible to smoking influences. Parameter α (effective interaction rate
between potential smokers and beginner smokers) measures how frequently potential smokers interact with beginner
smokers in a way that encourages them to start smoking. This could be through peer influence, school or workplace
environments, or social settings where smoking is normalized. Parameter β (effective interaction rate between potential
smokers and heavy smokers) represents the rate at which potential smokers are influenced by heavy smokers to start
smoking. This includes influences such as family members who smoke, media exposure, or cultural acceptance of
smoking. Parameter δ (effective interaction rate between beginner smokers and heavy smokers) denotes the likelihood
of beginner smokers progressing to heavy smoking due to continued exposure to heavy smokers. This transition can be
driven by increased nicotine dependence, social reinforcement, or lack of smoking cessation support. Parameter σ (self-
control smoking-quit rate for beginner smokers) reflects the rate at which beginner smokers successfully quit smoking
on their own and return to the potential smoker population. Factors influencing this include personal motivation,
education, awareness campaigns, or short-term health concerns. Parameter µ (natural death rate for all populations)
represents the general mortality rate affecting all individuals in the model, independent of smoking. This accounts for
deaths due to aging, diseases unrelated to smoking, accidents, or other natural causes.

Here, we consider a discrete form of model (2.1) by using a standard difference scheme (Euler’s forward method) as
follows: 

Pt+1 = Pt + h[Λ− (αBt + βSt)Pt − µPt + σBt]

Bt+1 = Bt + h[(αBt + βSt)Pt − δBtSt − (σ + µ)Bt]

St+1 = St + h[δBtSt − µSt]
, (2.2)
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where h > 0 and the initial conditions P0, B0, S0 ≥ 0.

Due to various biological and behavioral aspects of smoking dynamics, we took into account the mass action inci-
dence rate instead of the standard incidence rate when modeling the spread of smoking behavior as an infectious-like
process. Direct social interactions, such as peer pressure and influence from family members or close social circles, are
frequently the cause of smoking initiation. The mass action incidence rate makes the assumption that the number of in-
teractions between susceptible people and existing smokers is proportionate to the rate of new smokers. The standard
incidence rate introduces a sort of ”saturation effect.as prevalence rises and is frequently employed in epidemiological
models where the risk of infection is based on the percentage of infected people in the overall population. The risk of
initiation does not, however, always reach saturation in smoking dynamics. People are exposed to smokers in a variety
of contexts (such as the media, workplaces, and schools), and the likelihood that someone will start smoking depends
more on absolute numbers than on population proportions. Many epidemiological models for behaviors affected by
social interactions-e.g. drug use [14] and alcohol addiction [15]-adopt the mass action form since direct exposure to
current users raises the likelihood of adopting such behaviors. Unlike traditional infectious diseases like measles [16],
influenza [17], hepatitis B [18], or COVID-19 [19], which are spread by relative population sizes, smoking behaves
similarly to such social behaviors.

The population in our model is assumed to be homogeneous, meaning that each person has an equal chance of
interacting, changing, or reacting to processes (e.g., infection, quitting smoking, reproduction, death, etc.). Mass ac-
tion mixing occurs when people mix evenly with one another. Everyone changes states (such as being susceptible to
infection) at the same rate. There’s no heterogeneity in traits like age, immunity, risk behavior, etc.

First, we study the boundedness of the system’s solution. We follow the method used in [20, 21]. LetNt = Pt+Bt+St
be the total number of population at time t. The initial condition yields N0 = P0 + B0 + S0 ≥ 0. By summing up all
equations in (2.2) we have

Nt+1 = Nt + h(Λ− µNt) = hΛ− (1− hµ)Nt.

This is a linear difference equation. By using standard technique (finding the homogeneous and particular solutions),
we get the solution is as follows

Nt =

(
N0 −

Λ

µ

)
(1− hµ)t +

Λ

µ
. (2.3)

To make the solution Nt does not diverge, the absolute value of 1− hµ should less than 1.

Next, we prove that the solution of system (2.2) is bounded. The statement is given in the following theorem.

Theorem 2.1. Let 0 < h ≤ 1/
(

(α+β+δ)Λ
µ + σ + µ

)
and N0 ≤ Λ/µ. Then the solution of system (2.2) is always nonnega-

tive and bounded above.

Demostración. First, we analyze the behavior of the solution Nt from (2.3). Let 0 < h < 1/
(

(α+β+δ)Λ
µ + σ + µ

)
. Then

h < 1/µ. This implies |1 − hµ| < 1. Therefore, we have Nt → Λ/µ as t → ∞. Let N0 ≤ Λ/µ, then Nt is an increasing
function of t and Nt ≤ Λ/µ. This means that Nt is bounded above. Since Pt ≤ Nt ≤ Λ/µ, Bt ≤ Nt ≤ Λ/µ, and
St ≤ Nt ≤ Λ/µ, then the solution of system (2.2) is bounded above.

Next, observe that

h ≤ 1
(α+β+δ)Λ

µ + σ + µ
=

1

αΛ
µ + (β + δ)Λ

µ + σ + µ
≤ 1

αBt + (β + δ)St + σ + µ
.
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From this, we have three inequalities:

(i) h ≤ 1

αBt + (β + δ)St + σ + µ
<

1

αBt + βSt + µ
,

(ii) h ≤ 1

αBt + (β + δ)St + σ + µ
<

1

δSt + σ + µ
,

(iii) h ≤ 1

αBt + (β + δ)St + σ + µ
<

1

µ
.

To prove that the solution of system (2.2) is nonnegative, or in other words, Pt, Bt, St ≥ 0, for all t ≥ 0, we use
mathematical induction. First, assume that Pt, Bt, St ≥ 0, for t ≥ 0. We will prove that Pt+1, Bt+1, St+1 ≥ 0. From the
first equation in (2.2), we get

Pt+1 ≥ Pt − h(αBt + βSt + µ)Pt = [1− h(αBt + βSt + µ)]Pt.

From (i), we have 1− h(αBt + βSt + µ) ≥ 0. This implies Pt+1 ≥ 0.

From the second equation in (2.2), we get

Bt+1 ≥ Bt − h(δSt + σ + µ)Bt = [1− h(δSt + σ + µ)]Bt.

From (ii), we have 1− h(δSt + σ + µ) ≥ 0. This implies Bt+1 ≥ 0.

From the third equation in (2.2), we get

St+1 ≥ St − hµBt = [1− hµ]Bt.

From (iii), we have 1− hµ ≥ 0. This implies St+1 ≥ 0.

This completes the proof.

3. The local stability of the equilibriums
The stability analysis of equilibrium points of (2.2) is essential for comprehending the smoking population’s long-

term behavior. Stability analysis aids in forecasting whether smoking will continue or eventually decline in the general
population. It suggests that smoking can be completely eliminated under specific circumstances if the smoker-free
equilibrium remains steady. By ensuring that the model behaves realistically and maintains its robustness under various
circumstances, stability analysis increases the credibility of the results for policymakers.

The model (2.2) has four equilibrium points, namely Ei = (P,B, S), i = 0, 1, 2. First, the smoking-free equilibrium
is obtained by setting B = S = 0 as follows

E0 =

(
Λ

µ
, 0, 0

)
.

Second, the heavy smokers-free equilibrium is obtained by setting S = 0, which given by

E1 =

(
σ + µ

α
,

Λα− µ(σ + µ)

αµ
, 0

)
.

Next, the positive equilibrium (P,B, S > 0) is obtained as follows. From the third equation in (2.2), we have
0 = hS(δB−µ), or B = µ/δ. If we substitute this into the first and second equations in (2.2) and eliminate them, then
we obtain

P =

(
Λ

µ
− µ

δ

)
− S,
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and

0 = βS2 +

(
µ+

(α+ β)µ

δ
− βΛ

µ

)
S +

(
(σ + µ)µ− αΛ

δ
+
αµ2

δ2

)
.

The solution of the quadratic equation is as follows

S1,2 =
−
(
µ+ (α+β)µ

δ − βΛ
µ

)
±
√(

µ+ (α+β)µ
δ − βΛ

µ

)2

− 4β
(

(σ+µ)µ−αΛ
δ + αµ2

δ2

)
2β

.

Therefore, we obtain two equilibriums:

E2 =
(
P ∗

1 ,
µ

δ
, S∗

1

)
,

E3 =
(
P ∗

2 ,
µ

δ
, S∗

2

)
,

where

S∗
1 =
−
(
µ+ (α+β)µ

δ − βΛ
µ

)
+

√(
µ+ (α+β)µ

δ − βΛ
µ

)2

− 4β
(

(σ+µ)µ−αΛ
δ + αµ2

δ2

)
2β

,

P ∗
1 =

(
Λ

µ
− µ

δ

)
− S∗

1 ,

S∗
2 =
−
(
µ+ (α+β)µ

δ − βΛ
µ

)
−
√(

µ+ (α+β)µ
δ − βΛ

µ

)2

− 4β
(

(σ+µ)µ−αΛ
δ + αµ2

δ2

)
2β

,

P ∗
2 =

(
Λ

µ
− µ

δ

)
− S∗

2 .

Note that, the equilibrium point E1 exists if Λα−µ(σ+µ)
αµ > 0, or

R0 :=
Λα

µ(σ + µ)
> 1.

In [9], R0 = Λα
µ(σ+µ) is the basic reproduction number. In the context of the smoking model, R0 is the average number

of new smokers produced by a single smoker in a population that is fully susceptible over a specific time period. The
prevalence of smoking will gradually decrease if R0 < 1, meaning that each smoker contributes to fewer than one new
smoker. This suggests that smoking will eventually become less common. A sustained or expanding smoking population
results from each smoker contributing to multiple new smokers if R0 > 1.

The Jacobian matrix of system (2.2) evaluated at any point E = (P,B, S) is given by

J(E) =

j11 j12 j13

j21 j22 j23

0 j32 j33

 , (3.1)

where

j11 = 1− h[(αB + βS) + µ], j12 = h[−αP + σ], j13 = −hβP,
j21 = h[αB + βS], j22 = 1 + h[αP − δS − (σ + µ)], j23 = h[βP − δB],

j32 = hδS, j33 = 1 + h[δB − µ].

The characteristic of the Jacobian matrix (3.1) is provided below

λ3 + a1λ
2 + a2λ+ a3 = 0,
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where

a1 = −(j11 + j22 + j33),

a2 = j11(j22 + j33) + j22j33 − j32j23 − j21j12,

a3 = j21(j12j33 − j32j13)− j11(j22j33 − j32j23).

We use the Jury stability conditions to analyze the local stability of system (2.2) which is given below [22]:
C1 := 1 + a1 + a2 + a3 > 0

C2 := 1− a1 + a2 − a3 > 0

C3 := 1− a2 + a1a3 − a2
3 > 0

C4 := 3− a2 > 0.

(3.2)

The equilibrium is said to be locally asymptotically stable if the condition (3.2) is satisfied.

First, we study the conditions for the local stability of equilibrium E0. For this case, we have the Jacobian matrix of
system (2.2) evaluated at E0 below

J(E0) =

1− hµ h(−αΛ
µ + σ) −hβΛ

µ

0 1 + h(αΛ
µ − (σ + µ)) hβΛ

µ

0 0 1− hµ

 .
From this, we have the Jury stability conditions for equilibrium E0 as follows

C1 = 2hµ+ (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1) + (hµ− 1)(hµ (3.3a)

+ h(µ+ σ − (Λα)/µ)− 2) + (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1)2

+ h(µ+ σ − (Λα)/µ)− 2 > 0,

C2 = (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1)− 2hµ+ (hµ− 1)(hµ+ h(µ (3.3b)

+ σ − (Λα)/µ)− 2)− (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1)2

− h(µ+ σ − (Λα)/µ) + 4 > 0,

C3 = (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1)2(2hµ+ h(µ+ σ − (Λα)/µ) (3.3c)

− 3)− (hµ− 1)(hµ+ h(µ+ σ − (Λα)/µ)− 2)− (h(µ+ σ

− (Λα)/µ)− 1)2(hµ− 1)4 − (h(µ+ σ − (Λα)/µ)− 1)(hµ− 1)

+ 1 > 0

C4 = 3− (hµ− 1)(hµ+ h(µ+ σ − (Λα)/µ)− 2)− (h(µ+ σ (3.3d)

− (Λα)/µ)− 1)(hµ− 1) > 0.

Thus, equilibrium E0 is locally asymptotically stable if the condition (3.3) holds.

For the case of equilibrium E1, we have the Jacobian matrix as follows

J(E1) =

1− h(µ− µ(µ+σ)−Λα
µ ) −hµ −βh(µ+σ)

α

−h(µ(µ+σ)−Λα)
µ 1 h(β(µ+σ)

α + δ(µ(µ+σ)−Λα)
αµ )

0 0 1− h(µ+ δ(µ(µ+σ)−Λα)
αµ ).


This leads us to the following Jury conditions:

C1 = h(µ− (µ(µ+ σ)− Λα)/µ)− h2(µ(µ+ σ)− Λα) (3.4a)

− (h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ)
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− Λα))/(αµ))− 1) + (h(µ− (µ(µ+ σ)− Λα)/µ)

− 1)(h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ))− 2)

− h2(µ(µ+ σ)− Λα)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 1)− 1 > 0

C2 = (h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ) (3.4b)

− Λα))/(αµ))− 1)− 2h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ))

− h2(µ(µ+ σ)− Λα)− h(µ− (µ(µ+ σ)− Λα)/µ)

+ (h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 2) + h2(µ(µ+ σ)− Λα)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 1) + 5 > 0

C3 = h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ)) + h2(µ(µ+ σ)− Λα) (3.4c)

− (h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 2)− ((h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ

+ (δ(µ(µ+ σ)− Λα))/(αµ))− 1) + h2(µ(µ+ σ)− Λα)

× (h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ))− 1))(h(µ− (µ(µ+ σ)

− Λα)/µ) + h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ))− 3)

− ((h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 1) + h2(µ(µ+ σ)− Λα)(h(µ

+ (δ(µ(µ+ σ)− Λα))/(αµ))− 1))2 > 0

C4 = h(µ+ (δ(µ(µ+ σ)− Λα))/(αµ)) + h2(µ(µ+ σ)− Λα) (3.4d)

− (h(µ− (µ(µ+ σ)− Λα)/µ)− 1)(h(µ+ (δ(µ(µ+ σ)

− Λα))/(αµ))− 2) + 2 > 0.

We will have the equilibrium E1 is locally asymptotically stable if the condition (3.4) holds.

For the case of equilibriums E2 and E3, the expression of the Jury stability conditions C1, C2, C3, and C4 is too long.
Therefore, in this paper, we only calculate them numerically in the examples in the next section. In this section, we
only calculate the Jacobian matrices for both equilibriums.

For the third equilibrium, E2, we have the Jacobian matrix:

J(E2) =

j11 j12 j13

j21 j22 j23

0 j32 1

 , (3.5)

where

j11 = 1− h((3µ)/2 + ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2/2 + (µ(α+ β))/(2δ)− (Λβ)/(2µ)

+ (αµ)/δ),

j12 = h(σ + α((µ+ ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)

− Λ/µ+ µ/δ)),

j13 = βh((µ+ ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)− Λ/µ+ µ/δ),

j21 = h(µ/2 + ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ
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+ (αµ2)/δ2))1/2/2 + (µ(α+ β))/(2δ)− (Λβ)/(2µ) + (αµ)/δ),

j22 = 1− h(µ+ σ + α((µ+ ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2

− 4β((µ(µ+ σ)− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ

− (Λβ)/µ)/(2β)− Λ/µ+ µ/δ) + (δ(µ+ ((µ+ (µ(α+ β))/δ

− (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ + (αµ2)/δ2))1/2

+ (µ(α+ β))/δ − (Λβ)/µ))/(2β)),

j23 = −h(µ+ β((µ+ ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)

− Λ/µ+ µ/δ)),

j32 = (δh(µ+ ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ))/(2β).

In the case of fourth equilibrium E3, we have the Jacobian matrix:

J(E3) =

j11 j12 j13

j21 j22 j23

0 j32 1

 , (3.6)

where

j11 = 1− h((3µ)/2− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2/2 + (µ(α+ β))/(2δ)− (Λβ)/(2µ) + (αµ)/δ),

j12 = h(σ + α((µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)− Λ/µ

+ µ/δ)),

j13 = βh((µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)− Λ/µ+ µ/δ),

j21 = h(µ/2− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2/2 + (µ(α+ β))/(2δ)− (Λβ)/(2µ) + (αµ)/δ),

j22 = 1− h(µ+ σ + α((µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)− Λ/µ+ µ/δ)

+ (δ(µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ))/(2β)),

j23 = −h(µ+ β((µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)

− Λα)/δ + (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ)/(2β)− Λ/µ+ µ/δ)),

j32 = (δh(µ− ((µ+ (µ(α+ β))/δ − (Λβ)/µ)2 − 4β((µ(µ+ σ)− Λα)/δ

+ (αµ2)/δ2))1/2 + (µ(α+ β))/δ − (Λβ)/µ))/(2β).

4. Numerical simulations
In this section, we give several examples to confirm the analytical result of the previous section, and provide some

sensitivity analysis for the parameters. The following initial conditions are used: P0 = 153, B0 = 40, and S0 =
79 [9]. Since the model is formulated in discrete time, solutions are obtained through direct iteration rather than
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solving differential equations numerically like in continuous-time models that require numerical integration methods.
Each iteration step updates the system based on the recurrence relations defined in the model equations. Iterative
computation is straightforward and efficient for exploring the system’s dynamics over time.

4.1. Illustrative cases for verifying equilibrium stability

Some parameters’ values are taken from [9], and the others are assumed such that they satisfy the Jury conditions
in (3.2).

Example 4.1. In this example, we confirm the stability of the smoking-free equilibrium E0. Consider the value of the
following parameters: Λ = 0,25, α = 0,00014, β = 0,0024, σ = 0,0001, δ = 0,0004, µ = 0,01, h = 0,05. From (3.3), we
have C1 = 8,25 × 10−11 > 0, C2 = 7,99 > 0, C3 = 6,88 × 10−10 > 0, and C4 = 0,0027 > 0. Therefore, the equilibrium
E0 = (25, 0, 0) is locally asymptotically stable. This result is confirmed by Fig. 1.

(a) (b)

Figura 1: (a) Time series and (b) phase portraits of system (2.2) to depict the the stability of equilibrium E0.

Example 4.2. In this example, we confirm the stability of the heavy smokers-free equilibrium E1. Consider the value of
the following parameters: Λ = 0,25, α = 0,0014, β = 0,0024, σ = 0,0001, δ = 0,0004, µ = 0,01, h = 0,05. From (3.4), we
have C1 = 8,98 × 10−11 > 0, C2 = 7,99 > 0, C3 = 1,56 × 10−9 > 0, and C4 = 0,0038 > 0. Therefore, the equilibrium
E1 = (7,21, 17,78, 0) is locally asymptotically stable. This result is confirmed by Fig. 2.
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(a) (b)

Figura 2: (a) Time series and (b) phase portraits of system (2.2) to depict the the stability of equilibrium E1.

Example 4.3. In this example, we confirm the stability of the first positive equilibrium E2. Consider the value of the
following parameters: Λ = 0,25, α = 0,014, β = 0,024, σ = 0,0001, δ = 0,0004, µ = 0,007, h = 0,05. We have the Jury
stability conditions: C1 = 1,07 × 10−9 > 0, C2 = 7,92 > 0, C3 = 1,91 × 10−7 > 0, and C4 = 0,0393 > 0. Therefore, the
equilibrium E2 = (8,08, 17,5, 10,13) is locally asymptotically stable. This result is confirmed in Fig. 3.

(a) (b)

Figura 3: (a) Time series and (b) phase portraits of system (2.2) to depict the the stability of equilibrium E2.

Example 4.4. In this example, we confirm the stability of the second positive equilibrium E3. Consider the value of the
following parameters: Λ = 0,25, α = 0,014, β = 0,024, σ = 0,0001, δ = 0,0004, µ = 0,0099, h = 0,05. We have the Jury
stability conditions: C1 = 3,79× 10−11 > 0, C2 = 7,93 > 0, C3 = 1,64× 10−7 > 0, and C4 = 0,0368 > 0. Therefore, the
equilibrium E3 = (0,29, 24,75, 0,22) is locally asymptotically stable. This result is confirmed in Fig. 4.
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(a) (b)

Figura 4: (a) Time series and (b) phase portraits of system (2.2) to depict the the stability of equilibrium E3.

4.2. Sensitivity analysis

The main parameters of system (2.2) which related to smoking behaviors are α (effective interaction rates between
potential and beginner smokers), β (effective interaction rates between potential and heavy smokers), δ (effective
interaction rates between beginner smokers and heavy smokers), and σ (self-control of smoking rate). In this section,
we provide sensitivity analysis to assess the impact of variational of those parameters on the smoking dynamics. To
this end, we simulate the system (2.2) with four different values of those parameters. We use the parameters’ value
based on Example 4.4.

In Figs. 5 and 6, the parameters α and β have a similar sensitivity, where their higher value makes the population of
potential smokers, beginners, and heavy smokers decrease, increase, and increase, respectively. Thus, minimizing the
interaction between potential smokers and beginners and heavy smokers will reduce the number of smokers.

In Fig. 7, the parameter δ has a very small effect on the potential smoker population. Meanwhile, a higher value
of parameter δ makes the beginners and heavy smokers decrease and increase, respectively, with significant impacts.
Thus, minimizing the interaction between beginners and heavy smokers can also reduce the potential of heavy smokers.

In Fig. 8, a higher value of parameter σ makes the potential smokers, beginners, and heavy smokers increase,
decrease, and decrease, respectively. Thus, maximizing the self-control of smoking will reduce both the beginner and
heavy smoker populations. Increasing the number of quit attempts and the success rates of cessation are significant
objectives that both call for knowledge of self-control and motivation [23].
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(a) (b) (c)

Figura 5: Sensitivity analysis of parameter α for population (a) potential, (b) beginners, and (c) heavy
smokers.

(a) (b) (c)

Figura 6: Sensitivity analysis of parameter β for population (a) potential, (b) beginners, and (c) heavy
smokers.

(a) (b) (c)

Figura 7: Sensitivity analysis of parameter δ for population (a) potential, (b) beginners, and (c) heavy
smokers.
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(a) (b) (c)

Figura 8: Sensitivity analysis of parameter σ for population (a) potential, (b) beginners, and (c) heavy
smokers.

5. Conclusion
The discrete-time smoking model presented in this research is straightforward; nonetheless, it yields a complex analy-

sis for examining the local stability of the positive equilibria. Nonetheless, we may still employ numerical simulations
to investigate them. Sensitivity analysis of parameters associated with smoking behaviors provides crucial insights for
managing the smoker population, emphasizing the need to reduce interactions among potential, beginner, and heavy
smokers while maximizing self-control of smoking habits. This can be achieved through public health campaigns, re-
gulatory measures, smoking cessation programs, and the reduction of marketing by tobacco businesses. The model
presented in this paper may serve as a basis for future research by employing nonstandard difference schemes (as
introduced by [24] and used in [25, 26]) or incorporating an additional control component into the model. Future
research could also expand the model by taking into account outside variables like taxation, media influence, and
anti-smoking campaigns; adding randomness to account for erratic social influences and policy changes could make
the model more realistic; and expanding the model to multiple groups of smokers, influenced by social models like
corruption [27], could shed light on how smoking spreads in various social and economic contexts.
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