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Abstract: Ebola Virus Disease (EVD) remains a major global health threat, marked by periodic outbreaks
with severe mortality and socioeconomic consequences. In this study, a comprehensive mathematical mo-
del to analyze the transmission dynamics of EVD, explicitly incorporating key epidemiological factors such
as vaccination, treatment efficacy, and human contact rates. The model stratifies the total human popula-
tion into seven compartments: Susceptible (S), Vaccinated (V), Exposed (E), Infected (I), Hospitalized (H),
Deceased (D), and Recovered (R) is formulated. Using the next-generation matrix method, the basic repro-
duction number ( R0 ) is derived to assess the potential for disease spread. Stability analysis demonstrates
that the disease-free equilibrium is locally asymptotically stable when R0 < 1 and unstable otherwise. Nu-
merical simulations and sensitivity analyses are conducted to explore the model’s dynamics under various
intervention scenarios. The findings highlight the crucial role of high vaccination coverage and effective
treatment in significantly reducing EVD incidence and prevalence. Sensitivity analysis identifies the contact
rate as a critical driver of transmission, indicating that minimizing contact with infectious individuals subs-
tantially lowers outbreak magnitude. Furthermore, the study determines threshold values for vaccination
and treatment effectiveness that must be achieved to ensure outbreak containment. The model emphasizes
the necessity of integrated control strategies that combine vaccination, timely treatment, and public health
behaviour modifications. These results offer actionable insights for policymakers and health authorities
aiming to design effective response plans. The study recommends prioritizing sustained vaccination cam-
paigns, strengthening healthcare infrastructure, and implementing public awareness programs to enhance
community compliance and preparedness against future EVD outbreaks.
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1. Introduction
Ebola virus disease (EVD), also known as Ebola hemorrhagic fever, is a severe illness caused by the Ebola virus, a

member of the Filoviridae family [1]. The disease was first discovered in 1976 during outbreaks in Sudan and the
Democratic Republic of Congo (DRC). Since then, sporadic outbreaks have occurred primarily in Central and West
Africa, with the largest outbreak recorded in West Africa between 2014 and 2016. EVD is characterized by a very high
fatality rate, ranging from 25 % to 90 %, depending on the outbreak and access to healthcare [2]. The Ebola virus can
be is transmitted to humans through contact with infected animals, such as fruit bats, monkeys, or apes, found in the
African rainforest. Once the virus enters the human population, it spreads through direct contact with bodily fluids
(blood, feces, saliva, urine, sweat, vomit, breast milk) of infected individuals or contaminated surfaces and materials.
Preventing Ebola transmission requires implementing strict infection control measures, including: Personal protective
equipment (PPE) for healthcare workers, Safe burial practices to prevent exposure to infected corpses, Quarantine
and isolation of infected individuals, Contact tracing and monitoring of individuals exposed to Ebola patients, Public
health education campaigns to raise awareness about the disease and its prevention [1]. The signs and symptoms
of Ebola virus disease typically appear 2 to 21 days after exposure and include: Fever, headache, Severe Weakness,
Muscle pain, Fatigue. Diarrhea, Vomiting, Abdominal pain, Unexplained bleeding or bruising (hemorrhage). There
is currently no specific antiviral treatment for Ebola virus disease [1, 2]. Supportive care, including hydration, pain
management, and treatment of complications, such as secondary infections and organ failure, is crucial. Experimental
therapeutics and vaccines are being developed and tested, but their efficacy and availability remain limited. The Ebola
virus spreads through direct contact with bodily fluids of infected individuals, including blood, saliva, sweat, urine,
feces, vomit, and breast milk. Transmission can also occur through contact with contaminated surfaces, materials, or
medical equipment. Several experimental vaccines have been developed to prevent Ebola virus infection. The most
widely used vaccine is the rVSV-ZEBOV vaccine, which has shown efficacy in clinical trials during the West African
Ebola outbreak. The vaccine is based on a live, attenuated vesicular stomatitis virus (VSV) expressing the Ebola virus
glycoprotein [2, 3]. It has been shown to be safe and effective in preventing Ebola virus infection and is being used
in outbreak response and vaccination campaigns in affected regions. Ebola virus disease remains a significant public
health concern in Africa, particularly in regions where outbreaks occur sporadically. Factors such as inadequate health-
care infrastructure, poor infection control practices, and limited access to resources exacerbate the impact of Ebola
outbreaks in affected communities. Prompt detection, response, and vaccination efforts are essential for containing
outbreaks and preventing further transmission [2]. Several authors have studied mathematical modelling of infectious
diseases. [10] proposed a generalized epizootic model of Ebola virus disease (EVD) in bat population by considering
the environment contamination. They also investigated the stability analysis. [29] presented a novel soliton-based
SIR (Susceptible-Infectious-Recovered) model to investigate the spatiotemporal spread of infectious diseases in no-
madic populations. The authors incorporated mobility patterns typical of nomadic groups into a reaction-diffusion
framework, allowing for spatially dynamic interactions. The model effectively captured wave-like disease propagation
influenced by periodic movement. Through numerical simulations, it was demonstrated that soliton solutions could
represent stable traveling infection waves, offering new perspectives in understanding disease persistence and control
in transient communities. This approach provided a promising
direction for epidemiological studies involving populations with high mobility and low access to healthcare infras-
tructure. [30] developed a deterministic mathematical model to assess the dynamics of alcohol addiction within a
population, incorporating key compartments such as susceptibles, moderate users, addicted individuals, and those in
treatment. They examined the model’s equilibrium states and used the Routh-Hurwitz criteria to determine local stabi-
lity. A threshold parameter, similar to the basic reproduction number in epidemiology, was derived to assess addiction
persistence. Numerical simulations illustrated how treatment and awareness campaigns significantly reduced addic-
tion prevalence. The model emphasized the importance of early intervention and effective rehabilitation programs in
mitigating long-term societal impacts of alcohol abuse. [31] investigated the bifurcation structures of a discrete-time
epidemic model that incorporated vaccination and demographic processes such as births and deaths. The study focused
on the existence of co-dimension one (e.g., saddle-node and transcritical) and codimension two bifurcations, which
signify qualitative shifts in the dynamics as parameters vary. Using center manifold theory and bifurcation analysis,
the authors showed how varying vaccination rates and infection probabilities led to rich dynamical behavior, including
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periodic outbreaks and complex transitions. The findings underscored the importance of parameter sensitivity in public
health planning and in predicting critical transitions in disease prevalence.

Other relevant studies include [4,5,9,11,13]. The primary aim of this study is to develop and analyze a mathematical
model that captures the transmission dynamics of Ebola Virus Disease (EVD) in a human population, with the goal
of identifying effective control strategies. The specific objectives are to incorporate key epidemiological factors such
as vaccination, treatment, contact rate, hospitalization, and burial practices into the model; to derive and analyze the
basic reproduction number (R0) to understand disease thresholds; to perform sensitivity analysis to identify the most
influential parameters affecting disease spread; and to conduct numerical simulations to evaluate the effectiveness
of various intervention strategies on disease reduction and eventual eradication. The novelty of this study lies in its
comprehensive and realistic modeling approach, which extends beyond traditional compartmental models by inclu-
ding a deceased but unburied compartment a critical and often overlooked route of Ebola transmission. Additionally,
the model integrates the interplay between vaccination efficacy, treatment effectiveness, and behavioral interventions,
offering a more holistic view of epidemic control. By combining analytical derivations, sensitivity analysis, and nume-
rical simulations, the study provides a robust framework for evaluating threshold-dependent outcomes and optimizing
resource allocation in public health responses. This integrated approach contributes new insights into how multiple,
simultaneous interventions can synergistically suppress and eliminate Ebola outbreaks.

1.1. Ebola Virus Disease (EVD) in Africa

Ebola virus disease (EVD), a severe and often fatal illness, has posed significant challenges to healthcare systems
and communities across Africa [23]. Since its discovery in 1976, Ebola outbreaks have occurred sporadically in various
African countries, with notable prevalence in regions of Central and West Africa [22]. The disease is characterized
by high mortality rates, rapid transmission within communities and healthcare settings, and profound social and
economic consequences for affected populations. This discussion will explore the impact of Ebola virus disease on
Africa, including its transmission dynamics, effects on healthcare systems, social and economic ramifications, response
strategies, and efforts to enhance resilience and preparedness.

Outbreaks: Ebola outbreaks have occurred sporadically in Africa since the virus was first identified in 1976 [22]. The
largest outbreak in history began in West Africa in 2014, primarily affecting Guinea, Liberia, and Sierra Leone [24].
This outbreak highlighted the challenges in controlling the spread of the virus, including weak healthcare infrastruc-
ture, limited resources, and social factors such as distrust of authorities and traditional burial practices that facilitate
transmission.

Transmission: Ebola is transmitted through direct contact with bodily fluids of infected individuals or contact with
contaminated surfaces or materials [22]. The virus can spread rapidly within communities, healthcare settings, and
during funeral rituals where there is close contact with infected individuals or their bodily fluids. The high case fatality
rate of Ebola, which can be up to 90 %, contributes to the severity of outbreaks [22].

Impact on Healthcare Systems: Ebola outbreaks place significant strain on healthcare systems in affected countries.
Hospitals and clinics become overwhelmed with cases, leading to shortages of medical supplies, healthcare workers,
and hospital beds [23]. The diversion of resources and personnel to manage Ebola can disrupt routine healthcare
services, exacerbating other health problems in the community.

Social and Economic Impact: Ebola outbreaks have profound social and economic consequences. Fear and stigma
surrounding the disease can lead to social ostracization of survivors and affected communities, hindering efforts to
control the outbreak [22]. Economic activities may also be disrupted, particularly in heavily affected areas, due to
travel restrictions, trade disruptions, and decreased productivity.
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Response and Prevention: International organizations, governments, and local communities collaborate to respond
to Ebola outbreaks through various measures [22]. These include case identification and isolation, contact tracing,
community engagement and education, safe burial practices, and vaccination campaigns. Additionally, research efforts
focus on developing effective treatments and vaccines to combat the disease [22].

Resilience and Preparedness: Despite the challenges posed by Ebola outbreaks, African countries and the internatio-
nal community have made strides in building resilience and preparedness to respond to future outbreaks [24]. This
includes strengthening healthcare systems, improving disease surveillance and laboratory capacity, training healthcare
workers, and enhancing community awareness and engagement.

Prevalence of Ebola in Africa: Africa has experienced numerous Ebola outbreaks, predominantly in Central and West
Africa, where the virus is endemic [22]. The Democratic Republic of the Congo (DRC) and neighboring countries in
the Central African region have faced recurring outbreaks of Ebola, posing ongoing challenges to public health systems
and regional stability [25].

Mortality Rate in Africa: The mortality rate of Ebola in Africa has varied across outbreaks but can be as high as 90 %
in some cases [22]. Mortality rates are influenced by factors such as access to healthcare, the timing of treatment
initiation, the virulence of the virus strain, and the effectiveness of public health interventions.

2. Model Formulation
The total human population is stratified into seven epidemiological compartments to reflect the various stages of

Ebola Virus Disease (EVD) progression and control measures. These compartments include: Susceptible individuals
(S), Vaccinated individuals (V), Exposed individuals (E),. Infected individuals (I),. Hospitalized individuals (H). De-
ceased but unburied individuals (D), . Recovered individuals (R). The model assumes a constant recruitment rate of
susceptible individuals at a rate denoted by Λ Susceptible individuals are vaccinated at a rate α1, moving them into
the vaccinated compartment. Due to the possibility of vaccine failure, vaccinated individuals may still become exposed
to the virus at a rate α2 after contact with infectious persons. Additionally, unvaccinated susceptible individuals beco-
me exposed through effective contact with infected individuals at a rate λ. Once exposed, individuals progress to the
infectious stage at a rate ω1, ω2, representing the average incubation period. Infected individuals are hospitalized at a
rate ψ1, depending on healthcare accessibility. Infected individuals may die due to the disease at a rate ψ2, while hos-
pitalized individuals may also die due to disease complications at a rate ψ2,. These deceased individuals accumulate in
the unburied deceased compartment, from which they are buried at a rate ψ3, an important public health intervention
given the infectious nature of EVD corpses. Hospitalized individuals recover and move to the recovered class at a rate
µ. A natural (non-disease-related) death rate ψ4 is assumed to act uniformly across all compartments.

Susceptible (S): This compartment represents individuals who are susceptible to contracting Ebola virus disease.
Susceptible individuals have not been infected with the virus and can become infected upon exposure to infected
individuals or contaminated materials.

Vaccinated (V): The vaccinated compartment consists of individuals who have received a vaccine against Ebola virus
disease. Vaccination reduces the susceptibility of individuals to infection and can contribute to herd immunity, thereby
helping to control the spread of the virus within the population.

Exposed (E): Individuals in the exposed compartment have been infected with the Ebola virus but have not yet
developed symptoms. During the incubation period, these individuals are not infectious but can later transition to the
infected compartment.

Infected (I): Infected individuals are those who have developed symptoms of Ebola virus disease and are capable of
transmitting the virus to others. This compartment represents individuals who are actively contributing to the spread
of the disease within the population.
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Variables Interpretation
N(t) Total human population
S Susceptible population
V Vaccinated population
E Exposed individuals
I Infected individuals
H Hospitalized Individuals
D Dead and unburied population
R Recovered individuals
Parameters Descriptions
Λ Recruitment rate
α1 Vaccination rate
λ Force of infection
α2 Rate of exposure due to vaccine failure
α3 Rate at of infection due to vaccine failure
µ Natural death rate
ω1 Rate of infection of exposed humans
ε1 Disease induced death rate associated with I compartment
ε2 Disease induced death rate associated with H compartment
ω2 Hospitalized rate of infected individuals
ψ1 Death rate of infected individuals

Cuadro 1: Variables and Parameters Used.

Hospitalized (H):The hospitalized compartment includes individuals who have developed severe symptoms of Ebola
virus disease and require medical care. Hospitalization is necessary for managing complications and providing suppor-
tive treatment to improve patient outcomes.

Deceased (D): Individuals in the deceased compartment have succumbed to Ebola virus disease. This compartment
represents the unfortunate outcome of severe cases of the disease and underscores the importance of timely medical
intervention and public health measures to prevent fatalities.

Recovered (R): Recovered individuals have successfully cleared the Ebola virus from their system and have develo-
ped immunity to subsequent infections. This compartment reflects the resilience of the human immune system and the
potential for individuals to overcome the disease with proper medical care and support. Each compartment interacts
dynamically within the model, with individuals transitioning between compartments based on specific rates of infec-
tion, recovery, hospitalization, and mortality [32]. By simulating these interactions, mathematical models can provide
insights into the spread and impact of Ebola virus disease within a population and inform public health strategies for
disease control and prevention.

2.1. Variables and Parameters Interpretation
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ψ2 Death rate of hospitalized individuals
ψ3 Recovery rate of hospitalized individuals
ψ4 Rate of burial for the dead and unburied population

Figura 1: Schematic Diagram for the model

2.2. Model Equations

dS

dt
= Λ− (λ+ α1 + µ)S (2.1)

dV

dt
= α1S − (α2 + µ) V (2.2)

dE

dt
= λS + α2V − (ω1 + µ)E (2.3)

dI

dt
= ω1E − (ε1 + ψ1 + ω2 + µ) I (2.4)

dH

dt
= ω2I − (ψ2 + ψ3 + ε2 + µ) H (2.5)

dD

dt
= ψ1I + ψ2H − ψ4D (2.6)

dR

dt
= ψ3H − µR (2.7)

where λ = β(I+H+D)
N .

3. Invariant Region of the Model
In mathematical modeling, the invariant region refers to a set of conditions or states within the model that remain

constant over time, regardless of initial conditions or parameter variations [21]. In epidemiology, this concept transla-
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tes to a stable set of conditions that characterize the behavior of a disease within a population. Identifying the invariant
region is crucial as it provides insights into the long-term behavior of the disease and helps in understanding the un-
derlying mechanisms governing its spread. By delineating the boundaries of this region, researchers can better predict
the dynamics of the disease, assess the effectiveness of control measures, and devise strategies for disease management
and prevention [20, 21]. Ultimately, the invariant region serves as a cornerstone for informing public health policies
and interventions aimed at mitigating the impact of infectious diseases like Ebola.

Theorem 3.1. The solutions set of the proposed model are feasible whenever t > 0, if they enter the invariant region D,
which is given by:

D =

{
(S, V,E, I,H,D,R) : S > 0, V > 0, E > 0, I > 0, H > 0, D > 0, R > 0, N <

Λ

µ

}

Demostración. The total population of the model is given as

N(t) = S + V + E + I +H +D +R

The sum of the differential equations is

N ′(t) = S′ + V ′ + E′ + I ′ +H ′ +D′ +R′

On evaluating the algebraic terms, we obtain

N ′(t) = Λ− (S + V + E + I +H +D +R)µ− (ω2I + ψ2H + ψ4D)

N ′(t) = Λ− µN − (ω2I + ψ2H + ψ4D)

dN

dt
≤ Λ− µN

Solving the differential equation using the integrating factor method, we obtained

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
e−µt

Applying Birkhoff and Rota’s theorem on the inequality, we obtain

0 ≤ N ≤ Λ

µ
as t→∞

Thus, D is a positively invariant set with respect to the schematic described by the model so that no solution path
leaves through the boundary of region D. Thus, in this region, the model is said to be epidemiologically and mathe-
matically well posed [6,7].
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4. Positivity of Solutions of the Model
In mathematical modeling, ensuring the positivity of solutions is vital for obtaining physically meaningful interpreta-

tions, particularly in systems where negative values are not feasible or violate constraints [7]. The positivity of solution
is fundamental for ensuring that model predictions accurately reflect the dynamics of infectious diseases within popula-
tions. Epidemiological models, such as compartmental models like the SIR (Susceptible-Infectious-Recovered) model,
describe how the numbers of susceptible, infectious, and recovered individuals change over time. Positivity constraints
ensure that these quantities remain non-negative, as negative values would not make sense in the context of disease
spread [6,26]. Additionally, in models with parameters representing transmission rates, recovery rates, or population
sizes, enforcing positivity ensures that these parameters have realistic interpretations and prevent unphysical scenarios,
such as negative transmission rates or populations. Techniques such as adding constraints to parameter estimates or
using numerical methods that preserve positivity, like non-negative matrix factorization, are employed to maintain the
positivity of solutions [26, 27]. By enforcing positivity, mathematical epidemiology models provide valuable insights
into disease dynamics, aiding in the development and evaluation of public health interventions.

It is necessary to show that all state variable of the model in are non-negative for all time (t), for the model to be
epidemiologically and mathematically feasible in the region D given by [7,8]:

D =
{

(S, V,E, I,H,D,R) ∈ R7
+ : (S + V + E + I +H +D +R) ≤ N

}
This can be done by considering,

{
(S, V,E, I,H,D,R) ≥ 0 ∈ R7

+

}
Lemma 4.1. Supposed the initial data for the given model (1) be ( S, V,E, I,H,D,R ) ¿0. Then the solutions (S, V,E, I,H,D,R)
of the model (1) are positive for all time t > 0

Demostración. Let t1 = sup{t > 0 : S > 0, V > 0, E > 0, I > 0, H > 0, D > 0, R > 0 ∈ [0, t]}. Thus t > 0.

We have from the first equation that

dS

dt
= Λ− (λ+ α1 + µ)S

dS

dt
≥ − (λ+ α1 + µ)S

This can also be written as

∫
dS

S
≥ −

∫
(λ+ α1 + µ) dt

We obtained:

lnS ≥ − (λ+ α1 + µ) t+ C

S(t) ≥ Ce−(λ+α1+µ)t

Applying the initial condition; when t = 0, S(0) = C
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Hence, S(t) ≥ S(0)e−(λ+α1+µ)t ≥ 0

In the same way, it can be shown that V,E, I,H,D,R > 0

5. The Disease Free Equilibrium of the Model
The steady state where infection does not exist (or absence of the disease), a point where E = I = H = D = R = 0

is called the disease-free equilibrium point (DFE) which is given

η0 = {S∗, V ∗, E∗, I∗, H∗, D∗, R∗ > 0} =

{
Λ

(α1 + µ)
,

α1Λ

µ (α1 + µ)
0, 0, 0, 0, 0

}

5.1. The Basic Reproduction Number of the Model

The basic reproduction number also called the fundamental reproductive rate of infected persons, R0, refers to the
average number of new infections caused by one Ebola-infected individual in a completely susceptible population
throughout their infectious period. This value is determined by employing the next generation operator method on the
dynamics system [8]. We calculate the basic reproduction number by using the next generation operator method on
the dynamical system

Hence, it follows that

R0 = ρ
(
FV −1

)
where ρ is the dominant eigenvalue of FV −1

F =


0 β β β
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


P2 0 0 0
−ω1 q3 0 0

0 −ω2 P4 0
0 −ψ1 −ψ2 ψ4

 ,
where P1 = α2 + µ, P2 = ω1 + µ, p3 = ε1 + ψ1 + ω2 + µ, P4 = ψ2 + ψ3 + ε2 + µ

FV −1 =


ω1β((P4+ω2)ψ4+ψ1P4+ψ2ω2)

P2q3P4ψ4

((P4+ω2)ψ4+ψ1P4+ψ2ω2)β
P4q3ψ4

β(ψ2+ψ4)
P4ψ4

β
ψ4

0 0 0 0
0 0 0 0
0 0 0


R0 =

βω1 (ψ1P4 + P4ψ4 + ψ2ω2 + ω2ψ4)

P2q3P4ψ4

5.2. Effects of Reproduction Number of Ebola disease on Public Health Measures

The Basic Reproduction Number (R0 ) of Ebola, which represents the average number of secondary infections caused
by one infected individual in a susceptible population, greatly influences public health measures.
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1. Higher R0 : If the R0 of Ebola is high, it indicates that the virus is highly transmissible. In such cases, more
aggressive measures are required to contain the spread. These measures may include strict quarantine, contact
tracing, isolation of cases, and community education to promote hygiene and safe burial practices. The goal is
to reduce the number of secondary infections and prevent widespread outbreaks [16,17].

2. Lower R0 : A lower R0 suggests that the virus is less transmissible. In this scenario, public health measures may
still be necessary but may not need to be as stringent. However, it is crucial to remain vigilant and maintain
surveillance to detect and respond to any potential outbreaks promptly [17].

3. Vaccine Development: The R0 of Ebola also influences vaccine development efforts. A higher R0 may prompt
more urgent research and development of vaccines to prevent transmission. Conversely, a lower R0 may reduce
the urgency but not eliminate the need for vaccines, especially in endemic regions [18].

4. Healthcare Infrastructure: Public health measures must be tailored to the healthcare infrastructure of affected
regions. Higher R0 values may overwhelm healthcare systems, necessitating additional resources
such as medical personnel, treatment facilities, and supplies. Lower R0 values may still strain healthcare systems
but to a lesser extent [17,18].

5.3. Local Asymptotic Stability of the DFE of the Model

Local asymptotic stability of the disease-free equilibrium (DFE) of a model means that if the number of infected indi-
viduals is initially small, the system will return to the DFE over time, and the disease will gradually die out. This type
of stability is determined by analyzing the system’s behavior near the DFE, often using linearization techniques such
as the Jacobian matrix and evaluating its eigenvalues [6]. If all eigenvalues have negative real parts, or if conditions
like the Routh-Hurwitz criteria are satisfied, the DFE is considered locally asymptotically stable. Typically, this occurs
when the basic reproduction number R0 < 1, indicating that the infection cannot invade the population and will not
persist.

Theorem 5.1. The disease-free equilibrium (DFE) point of the model (1) is locally asymptotically stable (LAS) if R0 < 1,
and unstable if R0 > 1.

Demostración. Applying Jacobian matrix to show the local stability of the disease free equilibrium point

J1 =



− (α1 + µ) 0 0 −βS
N

−βS
N

−βS
N 0

α1 −P1 0 0 0 0 0
β(I+H+D)

N α2 −P2 0 0 0 0
0 0 ω1 −q3 0 0 0
0 0 0 ω2 −P4 0 0
0 0 0 ψ1 ψ2 −ψ4 0
0 0 0 0 ψ3 0 −µ



Therefore the characteristic equation corresponding to J1 (η0) is evaluated as |J − λI| I.e
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J1 (η0) =

− (α1 + µ) 0 0 − β(α2+µ)
(α1+1)µ+α1

2+α2
− β(α2+µ)

(α1+1)µ+α1
2+α2

− β(α2+µ)
(α1+1)µ+α2

1+α2
0

α1 −P1 0 0 0 0 0
0 α2 −P2 0 0 0 0
0 0 ω1 −q3 0 0 0
0 0 0 ω2 −P4 0 0
0 0 0 ψ1 ψ2 −ψ4 0
0 0 0 0 ψ3 0 −µ

The characteristics polynomial of J1 (η0) is
λ7 + a1λ

6 + a2λ
5 + a3λ

4 + a4λ
3 + a5λ

2 + a6λ+ a7
where λ represents eigen value and
a1 = (2µ+ ψ4 + P4 + q3 + P2 + P1 + α)
a2 = µ2 + (2P1 + 2P2 + 2q3 + 2P4 + 2ψ4 + α1)µ+ (P1 + P2 + q3 + P4 + ψ4)α1

+ (P1 + P2 + q3 + P4)ψ4 + (P2 + q3 + P4)P1 + (q3 + P4)P2 + q3P4

a3 = (P1 + P2 + q3 + P4 + ψ4)µ2

+

 (2P1 + 2P2 + 2q3 + 2P4 + α1)ψ4

+ (2P2 + 2q3 + 2P4 + α1)P1

+ (2q3 + 2P4 + α1)P2 + (2P4 + α1) q3 + α1P4

µ

+
(
(P2+q3+P4+α1)P1+(q3+P4+α1)P2

+(P4+α1)q3+α1P4

)
ψ4

+ ((q3 + P4 + α1)P2 + (P4 + α1) q3 + α1P4)P1

+ ((P4 + α1) q3 + α1P4)P2 + α1q3P4

(α1 + 1)

(
(P1 + P2 + q3 + P4)ψ4

+ (P2 + q3 + P4)P1 + (q3 + P4)P2 + q3P4

)
µ3

+ ((2P1 + 2P2 + 2q3 + 2P4)ψ4 + (2P2 + 2q3 + 2P4)P1 + (2q3 + 2P4)P2 + 2q3P4)α2
1

a4 =

(((2P2+2q3+2P4+1)P1+(2q3+2P4+1)P2+(2P4+1)q3+P4)ψ4

+( (2q3+2P4+1)P2
+(2P4+1)q3+P4

)P1+((2P4+1)q3+P4)P2+q3P4

)
α1

(α1 + 1)µ+ α2
1 + α2(

((P1 + P2 + q3)P4 + (P2 + q3)P1 + P2q3)ψ4

+ ((P2 + q3)P1 + P2q3)P4 + P1P2q3

)
(α1 + 1)µ3

+

( (
(2P2+2q3+1)P1+(2q3+1)P2+q3)P4

+((2q3+1)P2+q3)P1+P2q3

)
ψ4

+ (((2q3 + 1)P2 + q3)P1 + P2q3)P4 − ω1βα2 + P1P2q3

)
α1

a5 =
+
(
(α2+2P2+2q3)P1+(α2+2q3)P2+α2q3)P4

+((α2+2q3)P2+α2q3)P1+α2P2q3

)
ψ4

(α1 + 1)µ+ α2
1 + α2

((((P2 + q3)P1 + P2q3)P4 + P1P2q3)ψ4 + P1P2q3P4) (α1 + 1)µ3

a6 =

 ((((2P2 + 2q3)P1 + 2P2q3)P4 + 2P1P2q3)ψ4 + 2P1P2q3P4)α2
1

+
(
(((2q3+1)P2+q3)P1+P2q3)P4−ω1βα2+P1P2q3)ψ4

+(−ω1βα2+P1P2q3)P4−α2ω1β(ω2+ψ1)

)
α1

+ ((((α2 + 2q3)P2 + α2q3)P1 + α2P2q3)P4 + α2P1P2q3)ψ4 + α2P1P2q3P4

µ2

(α1 + 1)µ+ α2
1 + α2

a7 =



+α3
1P1P2q3P4ψ4 + 2µα2

1P1P2q3P4ψ4

+

 (
µ2P1P2q3 − βα2

2ω1 + µP1P2q3
)
P4

−α2
2ω1ω2β

−α2
2ω1ω2βψ2

ψ4

+µP1P2q3P4ψ4 (µ+ α2) + α1α2µP1P2q3P4ψ4 (1−R0)


α1

µα1+α2
1+µ+α2

Applying the Routh-Hurwitz criterion to the characteristic polynomial as shown in [6], we determine the conditions
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under which the equilibrium is locally asymptotically stable.

(1−R0) > 0

⇒ R0 < 1

To assess the local stability of the disease-free equilibrium, we apply the Routh-Hurwitz criterion to the seventh-
degree characteristic polynomial derived from the linearization of the model. For a seventh-order polynomial, the
Routh-Hurwitz criterion requires that all the first elements of the Routh array be positive. If this condition is met, all
the roots of the characteristic equation have negative real parts, ensuring local asymptotic stability. In this study, the
Routh-Hurwitz conditions are satisfied when the basic reproduction number R0 < 1, confirming that the diseasefree
equilibrium is locally asymptotically stable under this threshold.

5.4. Global Asymptotic Stability of the Disease Free Equilibrium Point of the Model.

To investigate the global stability of the disease free equilibrium, we use the technique implemented by Castillo-
Chavez and song [15].

To do this, we write the equation in the uninfected class as

dX

dt
= F (X,Z)

And we re-write the equation in the infected class as

dz

dt
= G(X,Z)

Where X = S ∈ R1
+ denotes the uninfected population and

Z = (E, I,H,D) ∈ R4
+ denotes the infected population

ε0 = (X∗, 0) represents the disease free equilibrium of the system, and it globally
asymptotically stable if it satisfies the following conditions:

H1 :
dX

dt
= F (X∗, 0) , X∗ is globally asymptotically stable

H2 :
dZ

dt
= DZG (X∗, 0)Z − Ĝ(X,Z)

Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ D and where DZG (X∗, 0) is an M- matrix (i.e the diagonal elements are no-negative
and it is also the Jacobian of Ĝ(X,Z) ≥ 0 evaluated at ( X∗, 0 ).

If the system satisfies the above condition, then the theorem below holds.
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Theorem 5.2. The equilibrium point ε0 = (X∗, 0). is globally asymptotically stable if R0 ≤ 1

Demostración.

F (X,Z) = [Λ− (λ+ α1 + µ)S] , G(X,Z) =


λS + α2V − (ω1 + µ)E
ω1E − (ε1 + ψ1 + ω2 + µ) I
ω2I − (ψ2 + ψ3 + ε2 + µ) H
ψ1I + ψ2H − ψ4D


At disease free equilibrium,

H1 :
dS

dt
= [Λ− (λ+ α1 + µ)S]

H2 :
DZG (X∗, 0)Z =


λS + α2V − (ω1 + µ)E
ω1E − (ε1 + ψ1 + ω2 + µ) I
ω2I − (ψ2 + ψ3 + ε2 + µ) H
ψ1I + ψ2H − ψ4D


Ĝ(X,Z) = DZG (X∗, 0)Z −G(X,Z)

Ĝ(X,Z) =


β(I +H +D)

(
1− S

N

)
0
0
0



Clearly, 1 ≥ S
N this implies that Ĝ(X,Z) ≥ 0.

Hence, It implies that, for the Ebola disease model, the infection will eventually be eradicated from the population
over time, regardless of the initial number of infected individuals. This means the system will naturally return to a
disease-free state, provided that the basic reproduction number R0 < 1. In this case, the control measures captured in
the model such as isolation, treatment, and vaccination are sufficient to prevent the spread of Ebola and ensure that
future outbreaks cannot sustain themselves within the population.

6. Endemic Equilibrium Point of the Model
The endemic equilibrium point is the steady state where there is persistence or prevalence of a disease in the popu-

lation. To obtain the endemic equilibrium we set the RHS of the differential equations in to zero and solve for the state
variables.

Thus, at the endemic equilibrium point,

dS

dt
=
dV

dt
=
dE

dt
=
dI

dt
=
dH

dt
=
dD

dt
=
dR

dt
= 0.

Let ε∗∗ = (S∗∗, V ∗∗, E∗∗, I∗∗, H∗∗, D∗∗, R∗∗) be the endemic equilibrium point.

We have that,
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S∗∗ =
Λ

(λ∗∗ + α1 + µ)

V ∗∗ =
α1Λ

(λ∗∗ + α1 + µ) (α2 + µ)

E∗∗ =
λΛ (α2 + µ) + α1α2 (ω1 + µ)

(λ∗∗ + α1 + µ) (ω1 + µ) (α2 + µ)

I∗∗ =
ω1

(ε1 + ψ1 + ω1 + µ)

(
λΛ (α2 + µ) + α1α2 (ω1 + µ)

(λ∗∗ + α1 + µ) (ω1 + µ) (α2 + µ)

)
H∗∗ =

ω1ω2

(ε1 + ψ1 + ω1 + µ) (ε2 + ψ2 + ψ3 + µ)

(
λΛ (α2 + µ) + α1α2 (ω1 + µ)

(λ∗∗ + α1 + µ) (ω1 + µ) (α2 + µ)

)
D∗∗ =

(
ω1 (ε2 + ψ2 + ψ3 + µ) + ω1ω2ψ2

ψ4 (ε1 + ψ1 + ω1 + µ) (ε2 + ψ2 + ψ3 + µ)

)(
λΛ (α2 + µ) + α1α2 (ω1 + µ)

(λ∗∗ + α1 + µ) (ω1 + µ) (α2 + µ)

)
R∗∗ =

ω1ω2ψ3

µ (ε1 + ψ1 + ω1 + µ) (ε2 + ψ2 + ψ3 + µ)

(
λΛ (α2 + µ) + α1α2 (ω1 + µ)

(λ∗∗ + α1 + µ) (ω1 + µ) (α2 + µ)

)

7. Sensitivity Analysis of the Model
Sensitivity analysis is carried out to determine the parameters that enhance the spread as well as control of an

infection in a population. The sensitivity index of the reproduction number of the model with respect to any parameter
say x is given by:
JR0
x = ∂R0

∂x ×
x
R0

Given that

R0 =
βω1 ((ψ1 + ψ2 + ψ3 + ε2 + µ)ψ1 + (ψ1 + ψ2 + ψ3 + ε2 + µ)ψ4 + ω2ψ2 + ω2ψ4)

(ω1 + µ) (ε1 + ψ1 + ω2 + µ) (ψ1 + ψ2 + ψ3 + ε2 + µ)ψ4

=R
h
0

β = 1,0000

=R0
ω1

=
µ

ω1 + µ
= 0,2308

=0 =


βω1(2ψ1+ψ2+ψ3+ε2+µ+ψ4)

(ω1+µ)(ε1+ψ1+ω2+µ)(ψ1+ψ2+ψ3+ε2+µ)ψ4
− βω1((ψ1+ψ2+ψ3+ε2+µ)ψ1+(ψ1+ψ2+ψ3+ε2+µ)ψ4+ω2ψ2+ω2ψ4)

(ω1+µ)(ε1+ψ1+ω2+µ)
2(ψ1+ψ2+ψ3+ε2+µ)ψ4

−βω1((ψ1+ψ2+ψ3+ε2+µ)ψ1+(ψ1+ψ2+ψ3+ε2+µ)ψ4+ω2ψ2+ω2ψ4)

(ω1+µ)(ε1+ψ1+ω2+µ)(ψ1+ψ2+ψ3+ε2+µ)
2ψ4

=ψ1

A

= 0,3502

where A = ψ1 (ω1 + µ) (ε1 + ψ1 + ω2 + µ) (ψ1 + ψ2 + ψ3 + ε2 + µ)ψ4

JR0

ψ2
=

ω2 (µ+ ψ1 + ψ3 − ψ4 + ε2)ψ2

(ψ1 + ψ2 + ψ3 + ε2 + µ) (ψ2
1 + (µ+ ε2 + ψ2 + ψ3 + ψ4)ψ1 + (µ+ ε2 + ψ2 + ψ3 + ω2)ψ4 + ω2ψ2)

= 0,4771

JR0

ψ3
= − ω2 (ψ2 + ψ4)ψ3

(ψ1 + ψ2 + ψ3 + ε2 + µ) (ψ2
1 + (µ+ ε2 + ψ2 + ψ3 + ψ4)ψ1 + (µ+ ε2 + ψ2 + ψ3 + ω2)ψ4 + ω2ψ2)

= 0,4507

JR0

ψ4
=

−ψ2
1 + (−µ− ε2 − ψ2 − ψ3)ψ1 − ω2ψ2

ψ2
1 + (µ+ ε2 + ψ2 + ψ3 + ψ4)ψ1 + (µ+ ε2 + ψ2 + ψ3 + ω2)ψ4 + ω2ψ2

= −0,8486
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Parameter Sensitivity Index Sensitivity Sign
β 1.0000 +ve
ω1 0.2308 +ve
ψ1 0.3502 -ve
ψ2 0.4771 +ve
ψ4 0.8486 -ve
ε1 0.0688 -ve
µ 0.2669 -ve

Cuadro 2: Sensitivity Indies for parameters in R0

JR0
ε1 = − ε1

ε1+ψ1+ω2+µ
= −0,0688

JR0
ε2 = − ω2 (ψ2 + ψ4) ε2

(ψ1 + ψ2 + ψ3 + ε2 + µ) (ψ2
1 + (µ+ ε2 + ψ2 + ψ3 + ψ4)ψ1 + (µ+ ε2 + ψ2 + ψ3 + ω2)ψ4 + ω2ψ2)

= −0,3731

=-0.2669

8. Sensitivity Analysis and Epidemiological Implications (Figure 2a)
Figure 2a presents a sensitivity bar chart showing the normalized sensitivity indices of various parameters with

respect to the basic reproduction number ( R0 ) a key threshold quantity that determines whether an infectious disease
can invade and persist in a population [31]. Parameters with positive sensitivity indices have a direct, amplifying effect
on R0, meaning that increases in these parameters lead to a higher value of R0, thereby facilitating the transmission of
Ebola Virus Disease (EVD). In this context, the contact rate (β) which represents the frequency of potentially infectious
interactions between susceptible individuals and infectious individuals or
contaminated surfaces exhibits a strong positive sensitivity index. This indicates that an increase in the contact rate
significantly raises R0, promoting faster and wider spread of the virus. Therefore, any public health intervention aimed
at reducing the contact rate such as isolating infected individuals, promoting hand hygiene, using personal protective
equipment (PPE), and limiting mass gatherings can substantially reduce the transmission potential of EVD [29, 30].
Conversely, parameters with negative sensitivity indices are inversely related to R0. An increase in these parameters
leads to a reduction in the basic reproduction number, thereby contributing to the control and eventual elimination
of the disease. Notably, the vaccination ( α1 ) rate shows a strong negative sensitivity index, indicating that higher
vaccination coverage effectively reducesR0. This finding highlights the critical importance of implementing widespread
and timely vaccination programs as a core strategy to mitigate the spread of EVD. The sensitivity analysis reveals
that reducing parameters with positive influence on R0 (such as contact rate) and enhancing those with negative
influence (such as vaccination rate) are essential to controlling the epidemic. Strategic public health efforts focused on
minimizing exposure and maximizing immunity through vaccination will not only lower R0 but also drive the disease
toward eradication in the population.
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Figura 2: Sensitivity bar chart

9. Numerical Simulations of the Model
Numerical simulation of mathematical models for Ebola disease can have significant effects on public health respon-

ses and understanding of the outbreak.

1. Prediction and Forecasting: Mathematical models, when simulated numerically, can provide predictions and
forecasts about the spread of Ebola. These simulations allow public health officials to anticipate the trajectory of
the outbreak, identify high-risk areas, and allocate resources more effectively [16,19].

2. Evaluation of Control Measures: Simulation of mathematical models enables the evaluation of different control
measures and interventions in a virtual environment before implementing them in real life. This helps policy-
makers assess the potential impact of interventions such as vaccination campaigns, quarantine measures, and
treatment strategies [18].

3. Optimization of Resource Allocation: By simulating different scenarios, mathematical models can help optimize
the allocation of limited resources such as healthcare personnel, medical supplies, and treatment facilities. This
ensures that resources are allocated where they are most needed to control the outbreak effectively [19].

4. Understanding Transmission Dynamics: Numerical simulation of mathematical models provides insights into the
transmission dynamics of Ebola, including factors such as the role of asymptomatic carriers, the effectiveness
of contact tracing, and the impact of population mobility. This understanding is crucial for designing targeted
interventions [20].

5. Scenario Planning: Simulation allows for scenario planning, where public health officials can explore various
hypothetical situations and assess their potential outcomes. This helps in developing contingency plans and
preparedness strategies for different scenarios, including worst-case scenarios [19].

6. Communication and Education: Visualizations generated from numerical simulations can aid in communicating
complex epidemiological concepts to the public, policymakers, and other stakeholders. This enhances public
understanding of the outbreak and the rationale behind public health interventions [20].
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Parameter Value Source
Λ 0.202 Assumed
µ 0.03 [12]
α1 0.25 [12]
λ 0.001 Assumed
ω1 0.1 [14]
α2 0.001 Assumed
ε1 0.5 Assumed
ε2 0.15 [14]
ω2 0.80 [15]
ψ1 0.01 [15]
ψ2 0.02 Assumed
ψ3 0.982 [12]
ψ4 0.0025 Assumed
β 0.027 Assumed

Cuadro 3: Parameter values used for simulations
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9.1. 4.1 Epidemiological Interpretation of Simulation Results (Figures 3a-3g)

Figure 3a illustrates the dynamics of the susceptible population over time under varying contact rates ( β ). As the
contact rate increases, the number of susceptible individuals decreases significantly. This trend is expected, as a higher
contact rate increases the likelihood of transmission from infectious individuals to those who are susceptible, thereby
reducing the susceptible pool more rapidly [33]. In contrast, Figure 3b shows that the number of vaccinated individuals
increases as the contact rate ( β ) decreases. This suggests the presence of an effective vaccination campaign, which
is further supported by the high vaccination rate assumed in the model. A lower contact rate may also imply better
compliance with public health measures, such
as seeking vaccination, which leads to a higher number of individuals moving from the susceptible to the vaccinated
class. Figure 3c presents the trend of exposed individuals over time. There is an initial rapid increase in the number
of exposed individuals, which later declines as the contact rate ( β ) decreases. This pattern indicates that reduced
contact with infectious individuals, likely due to behavioral interventions or public health control measures, effectively
curtails the spread of the virus during the incubation period. Similarly, Figure 3d shows the temporal dynamics of the
infectious population. An initial rise in the number of infectious individuals is observed, followed by a gradual decline
as the contact rate ( β ) decreases. This decline may be attributed to the combined effects of reduced transmission,
increased vaccination coverage (as seen in Figure 3b), and timely hospitalization or isolation of cases.

Figure 3e illustrates the number of hospitalized individuals. As the number of infectious individuals declines, a co-
rresponding decrease in hospitalizations is observed. This reflects the downstream impact of successful interventions
in the earlier stages of transmission namely vaccination and reduction in exposure which leads to fewer cases requi-
ring hospitalization. Figure 3f shows the trend in the number of deceased but unburied individuals. Given the high
virulence of the Ebola virus, there is an early surge in the number of deaths. However, over time, this number declines
sharply and eventually approaches zero. This decline indicates the effectiveness of public health responses such as ti-
mely medical intervention, proper case management, and implementation of safe burial practices, which help prevent
further infections from contact with corpses. Finally, Figure 3g displays a high recovery rate over time, indicating that
with proper medical care and control strategies, a substantial proportion of hospitalized individuals are able to reco-
ver. The increasing number of recovered individuals further contributes to the decline in the susceptible and infectious
populations.

Generally, the trends observed in Figures 3a to 3g suggest that Ebola Virus Disease (EVD) can be effectively controlled
and potentially eradicated from the population through a combination of interventions. These include reducing the
contact rate, increasing vaccination coverage, enhancing case detection and treatment, and promoting safe burial
practices. The model underscores the importance of integrated control strategies in achieving disease elimination and
protecting public health.

4.2 Findings from the Study

1. Impact of Vaccination Rate: High vaccination rates play a significant role in controlling the spread of the Ebola
virus. Numerical simulations demonstrate that increasing vaccination coverage substantially reduces the number
of new infections, thereby contributing to effective containment of the disease.

2. Effectiveness of Treatment: The implementation of timely and efficient treatment strategies leads to higher reco-
very rates among infected individuals. The simulations confirm that improved access to medical care significantly
limits the progression of the disease and aids in reducing transmission.

3. Role of Contact Rate: Sensitivity analysis underscores the critical role of minimizing contact between susceptible
and infectious individuals. A lower contact rate is strongly associated with reduced transmission, highlighting
the importance of behavioral interventions such as isolation, hygiene practices, and social distancing.
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4. Threshold Effects: The study identifies specific threshold levels for both vaccination coverage and treatment
efficacy. Surpassing these thresholds results in a marked decline
in disease prevalence, thereby strengthening the effectiveness of control measures and moving the system toward
disease elimination.

5. Temporal Dynamics: The mathematical model captures the time-dependent behavior of the Ebola outbreak,
showing how variations in vaccination rate, treatment effectiveness, and contact rate influence the epidemic’s
progression over time. This dynamic analysis provides insight into the optimal timing and intensity of interven-
tions.

6. Trade-offs and Synergies: The findings highlight important trade-offs and synergies between different inter-
vention strategies. While both vaccination and treatment independently contribute to disease reduction, their
combined application yields a greater overall impact. This suggests that integrated approaches are more effective
than isolated efforts.

7. Policy Implications: The results of the study offer valuable guidance for public health policymakers. Emphasis
should be placed on expanding vaccination programs, enhancing treatment infrastructure, and enforcing mea-
sures to reduce contact with infectious individuals. A coordinated and multifaceted approach is essential for the
successful control and eventual eradication of Ebola Virus Disease.

5. Conclusion
This study presented a comprehensive mathematical model for the transmission dynamics of Ebola Virus Disease

(EVD), incorporating key epidemiological features such as vaccination, treatment, contact with infected individuals
and contaminated surfaces, hospitalization, and safe burial practices. The model stratified the total population in-
to seven distinct compartments Susceptible, Vaccinated, Exposed, Infected, Hospitalized, Deceased (unburied), and
Recovered to accurately reflect the natural history of Ebola and the impact of control measures. Through a combina-
tion of analytical techniques and numerical simulations, the basic reproduction number ( R0 ) was derived using the
next-generation matrix method. Stability analysis confirmed that the disease-free equilibrium is locally and globally
asymptotically stable when R0 < 1, and unstable when R0 > 1, thereby establishing R0 as a critical threshold parame-
ter for disease persistence. Sensitivity analysis identified the most influential parameters affecting R0. It was found that
the contact rate ( β ) had a strong positive impact on disease transmission, indicating that reducing contact with infec-
tious individuals is crucial for containment. In contrast, vaccination rate and treatment effectiveness were negatively
correlated with R0, emphasizing their importance in suppressing the outbreak. These findings provide evidence-based
insight into the prioritization of public health interventions.

The numerical results demonstrated that increasing vaccination coverage significantly reduces new infections, whi-
le effective and timely treatment enhances recovery rates and limits disease progression. Moreover, the simulations
showed that combining multiple strategies such as vaccination, treatment, and reduction in contact rate-produces sy-
nergistic effects, yielding a greater impact on reducing disease burden than any single intervention alone. The temporal
dynamics captured by the model illustrated the evolution of EVD over time and how various intervention measures
influence the trajectory of the epidemic. Importantly, the model showed that with sufficient vaccination and treat-
ment efforts, and by minimizing contact with infected individuals and corpses, the disease can be controlled and
eventually eradicated from the population. The study underscores the importance of integrated and well-coordinated
public health strategies in managing Ebola outbreaks. Policymakers and public health practitioners are encouraged to
invest in widespread vaccination campaigns, strengthen healthcare infrastructure
for timely treatment, and enforce strict infection prevention and control (IPC) measures, especially in handling de-
ceased individuals. These combined efforts will not only suppress current outbreaks but also build resilience against
future resurgence of Ebola Virus Disease.
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