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Abstract: The Monkeypox (Mpox) outbreak continues to pose a significant public health burden world-
wide. This situation necessitates a deeper understanding of the disease’s transmission and control mecha-
nisms. Mathematical modeling serves as an effective tool for this purpose. The integration of vaccination,
quarantine, isolation, and hospitalization strategies within these models highlights their critical role in
mitigating the spread of Mpox. This review presents a comprehensive analysis of mathematical models
developed to study the transmission dynamics and control of the Mpox virus, covering a broad spectrum
from basic frameworks to more advanced models incorporating vaccination, quarantine, isolation, and
hospitalization strategies. Key findings from the reviewed studies suggest that models integrating multiple
simultaneous intervention strategies better represent the dynamics, but are relatively rare. Furthermore,
few models consider bidirectional transmission routes between humans and animals; these are crucial
for accurately characterizing Mpox dynamics. The inclusion of complex features such as fractional-order
derivatives, risk group stratification, and optimal control analyses has been limited but demonstrates sig-
nificant potential for more realistic scenario analysis. By synthesizing these findings, this review aims to
inform researchers and policymakers in designing more effective intervention strategies to curb the spread
of Mpox.
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1 Introduction
Throughout human history, numerous outbreaks of infectious diseases have caused significant disruptions to public
health, the economy, society, and the environment. Among the most well-known of these outbreaks are smallpox, HIV,
Ebola, SARS, SARS-CoV-2, and, more recently, Monkeypox (Mpox). In recent years, the Mpox outbreak has emerged
as a serious global health threat. Mpox is a zoonotic disease triggered by the Mpox virus, which belongs to the genus
Orthopoxvirus in the Poxviridae family. The Poxviridae family is characterized by its double-stranded DNA genome [1].
Within this family, there are three additional viruses that are pathogenic to humans: the variola virus, the cowpox
virus, and the vaccinia virus [2]. A distinctive clinical feature of Mpox in its early stages is lymphadenopathy [3]. The
virus can spread to humans through close contact with an infected individual’s body fluids, such as saliva, mucus, or
skin lesions. Common symptoms include fever, headache, muscle aches, skin lesions, and rashes. Swelling caused
by the virus may appear on various parts of the body. Currently, there is no specific treatment for Mpox. However,
supportive care, including medications to reduce fever and pain, can help manage the symptoms. While the smallpox
vaccine offers partial protection against Mpox, its effectiveness is not guaranteed. Therefore, early detection of cases
is crucial for controlling the spread of the disease [1].

The Mpox virus was first identified in 1958 in laboratory monkeys used for research at the State Serum Institutes
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in Copenhagen, Denmark, and Africa [4]. It was not recognized as a distinct human infection until 1970, during the
global smallpox eradication campaign, when the virus was isolated from a patient in the Democratic Republic of the
Congo who was initially suspected of having smallpox. This delay in recognition was due to the fact that many clinical
features of Mpox infection in humans closely resemble those of smallpox [5]. The first outbreak outside of Africa
occurred in the United States in 2003. Since 2005, thousands of cases have been reported annually in the Democratic
Republic of the Congo. With the increase in international travel by infected individuals, the virus has rapidly spread
to different regions. In May 2022, a new outbreak of Mpox affected several countries in Europe, the United States,
and elsewhere. Between January 2022 and August 2024, over 100,000 cases were reported across more than 120
countries. On November 28, 2022, the World Health Organization (WHO) announced that the term ”Mpox” would be
used as the preferred name for the disease [6,7].

Although the Mpox virus has been isolated from several rodents and non-primate animals in Africa, the exact animal
reservoir of the virus remains unknown. In addition to animal-to-animal transmission, animal-to-human transmission
can occur through direct contact with infected animals, including touching, cleaning cages, hunting, processing meat,
bites, or scratches. Human-to-human transmission occurs via respiratory droplets, direct contact, vertical transmission,
percutaneous exposure, or indirect contact through fomites [8]. Furthermore, recent reports have presented evidence
suggesting that the Mpox virus can also be transmitted from humans to animals. This possibility has raised concerns
about the need to isolate pets from infected individuals and has sparked new discussions within the context of public
health [9,10].

Mathematical modeling has become an indispensable tool in the study of infectious disease dynamics. This approach
provides a systematic framework to understand disease transmission mechanisms, evaluate the effectiveness of inter-
vention strategies, and inform public health policymaking. However, despite the increasing number of mathematical
models for Mpox, the literature has some limitations. Many studies focus on a single intervention such as vaccination,
quarantine, isolation, and hospitalization but are not yet sufficient in terms of combined interventions or the examina-
tion of richer dynamics. Furthermore, the number of complex models that consider bidirectional transmission routes
between humans and animals, which is necessary for the characterization of Mpox transmission, is quite low. Complex
structures that include fractional dynamics, discrete dynamics, and risk group stratification are also not very common.
By addressing these shortcomings and methodological limitations, the present review aims to provide a solid basis for
comparing existing Mpox models and identify aspects that are overlooked in them, as well as inform future research
directions in this area.

This study offers a comprehensive review of mathematical modeling approaches developed for Mpox, categoriz-
ing and analyzing models based on different methodological perspectives. The present review focuses specifically on
the class of deterministic models, which include classical integer and fractional order models, and does not consider
stochastic, agent-based, or purely data-driven modeling approaches. Mpox models are classified in Section 2 accord-
ing to the number of incorporated control strategies, such as vaccination, quarantine, isolation, and hospitalization,
grouped as single, double, or multiple intervention models. In Section 3, the key results and a summary of find-
ings from the reviewed studies are presented, highlighting important trends, model features and insights. Section 4
provides a critical discussion of the strengths and limitations of the various modeling approaches, addresses impor-
tant methodological considerations. Finally, Section 5 concludes the study by summarizing the main outcomes and
proposing specific, actionable recommendations for future research directions.

2 Classification of Mpox Models on Implemented Control Strategies
Zoonotic diseases often serve as the origin of pathogens that can effectively cross species barriers and transmit from
human to human. In a study examining over 1400 pathogens known to cause infections in humans, it was found that
61% of them are zoonotic [11]. Modeling zoonotic diseases generally requires addressing transmission across multiple
species. Mathematical models of Mpox typically consider both human and animal or rodent populations. Subsequently,
a system of differential equations is developed to represent the transmission dynamics within and between these
populations. Fractional-order differential equations have also been frequently employed in Mpox models.

In the literature, Mpox models typically include compartments representing the different disease stages within hu-
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man and animal populations. These compartments generally consist of susceptible, vaccinated, exposed (infected but
not infectious), infectious, quarantined, isolated, hospitalized, and recovered individuals, denoted respectively by the
classes S, V,E, I,Q, J,H, and R. Subscripts h and a denote human and animal populations, respectively (e.g., Sh or
Sa). Additional compartments have been incorporated in some studies based on further assumptions. In subsequent,
the Mpox mathematical models from the literature are examined and categorized according to their number of control
strategies included. Descriptions of frequently used parameters and compartments in these models are provided in
Table 1. Parameters not included in Table 1 are either defined within the corresponding model descriptions or are
used contextually in a self-explanatory manner. In particular, deterministic compartmental models will be presented.
The characteristics of the models reviewed are summarized in Tables 2,3, and 4. This table allows a comparison of the
models in terms of the compartments used, modeling approach, the control strategies implemented, and conducted
analysis. The control strategies column considers vaccination, quarantine, isolation, and hospitalization. Since treat-
ment strategies are addressed in most studies, they are not specified separately. On the other hand, the conducted
analyses column includes the identification of the feasible region, the calculation of R0, stability analyses of equilib-
rium points, sensitivity analyses, bifurcation analyses, numerical analyses, and optimal control studies. As various
simulations are provided in all studies, these are not specified separately. There, E0, E∗, and E∗∗ denotes disease-free,
endemic, and animal-disease-free equilibrium points, respectively.

Parameter Description Compartment Description
Λh Recruitment rate of human Sh Susceptible humans
Λa Recruitment rate of animal Sh1 Low-risk susceptible humans
µh Natural death rate of human Sh2 High-risk susceptible humans
µa Natural death rate of animal Vh Vaccinated humans
δh Disease-related death rate of human Eh Exposed humans
δa Disease-related death rate of animal Ih Infected humans
β1 Animal-to-human infection rate Ih1 Asymptomatic infected humans
β2 Human-to-human infection rate Ih2 Symptomatic infected humans
β3 Animal-to-animal infection rate Qh Quarantined humans
β4 Human-to-animal infection rate Jh Isolated humans
p Proportion of successful vaccinated human Hh Hospitalized humans
q Proportion of unsuccessful vaccinated human Rh Recovered humans
α1 Transition rate of humans from exposed to infected class Th Treated humans
α2 Transition rate of animals from exposed to infected class B Contaminated environment
α3 Transition rate of humans from exposed to quarantined class Sa Susceptible animals
γh Recovery rate of infected human Ea Exposed animals
γa Recovery rate of infected animal Ia Infected animals
θ Recovery rate of quarantined human Ra Recovered animals
τ Transition rate of humans from infected to quarantined class

Table 1: Descriptions of the parameters and compartments included in the models.

2.1 Single-Strategy Models

This subsection discusses Mpox models that incorporate only a single control strategy, highlighting the key features
and findings of the relevant studies.

Vaccination

Smallpox vaccines play a significant role in combating the Mpox outbreak. However, the effectiveness, side effects,
and practical limitations of these vaccines restrict their protective function within certain populations. Therefore, there
remains a need for safer and more effective vaccines [12]. Vaccination reduces the susceptible population by inducing

79



Journal of Mathematical Epidemiology, 1(1), 77-98, (2025)
Research Paper

Open Access
ISSN: 0000-0000

immunity. Therefore, in the long run, it reduces epidemic spread and potential and contributes to herd immunity.
Numerous mathematical modeling studies have investigated the impact of vaccination programs on the dynamics of
the Mpox virus within populations. The first mathematical modeling study examining Mpox dynamics, which includes
vaccination and treatment interventions, was conducted by [13]. They developed the following model to analyze the
transmission dynamics of the Mpox virus:

dSh
dt

= Λh − β1IaSh

Na
− β2IhSh

Nh
− (µh + p)Sh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dVh
dt

= pSh − µhVh,
dEa
dt

= β3SaIa
Na

− (µa + α2)Ea,

dEh
dt

= β1IaSh

Na
+ β2IhSh

Nh
− (µh + α1)Eh,

dIa
dt

= α2Ea − (µa + δa + γa)Ia,

dIh
dt

= α1Eh − (µh + γh + δh)Ih,
dRa
dt

= γaIa − µaRa,

dRh
dt

= γhIh − µhRh.

(2.1)

In this model, vaccinated susceptible individuals move to the vaccinated class Vh, where they are assumed to acquire
permanent immunity against the disease. The reproduction numbers for the human and animal populations are
respectively computed as

Rh
0 =

α1β2µh
(µh + γh + δh)(µh + α1)(p+ µh)

, Ra
0 =

α2β3

(µa + δa + γa)(µa + α2)
,

and the overall basic reproduction number is given by R0 = max{Rh
0 ,R

a
0}. The study concluded that if R0 < 1,

the disease can be eradicated from both human and animal populations. Sensitivity analyses were performed on the
parameters within R0 to quantify the positive impact of vaccination and treatment strategies in reducing the value of
reproduction number. It has been stated that with treatment and vaccination measures, it is possible to eliminate the
disease from both human and animal populations over time.

Another vaccination-included mathematical model was proposed in [14], where exposure states in humans were not
considered:

dSh
dt

= Λh − (β1Ia+β2Ih)Sh

Nh
− (p+ µh)Sh + qVh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dVh
dt

= pSh − (q + µh)Vh,
dIa
dt

= β3SaIa
Na

− (γa + δa + µa)Ia,

dIh
dt

= (β1Ia+β2Ih)Sh

Nh
− (γh + µh + δh)Ih,

dRa
dt

= γaIa − µaRa,

dRh
dt

= γhIh + (1− q)Vh − µhRh.

Here, the successful vaccination rate among vaccinated susceptible individuals is represented by 1− q, with a fraction
q failing vaccination and reverting to the susceptible class. The basic reproduction number is derived as

R0 =
β2β3Λhλa(q + µh)

NhNaµh(γh + µh + δh)(p+ q + µh)(δa + µa)(γa + µa)
,

where Nh and Na denote the total human and animal population sizes, respectively. The model concluded that
when R0 < 1, eradication of the disease from both populations is achievable. Sensitivity analyses of parameters
were also conducted. It is suggested that individuals with a strong immune system are likely to recover more rapidly
than those with a moderate immune system, while individuals with a weak immune system may recover much more
slowly. Moreover, it is emphasized that individuals can play an active role in strengthening their immune system by
maintaining a healthy weight, engaging in regular physical exercise, ensuring adequate sleep, and consuming healthy
food and clean water. Consequently, it was noted that governments have a crucial role to play in supporting these
aspects of public health.
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A more complex model examining the effect of vaccination was introduced in [15]:

dSh
dt

= (1− f)Λh −
(
β1(εaEa+Ia)

Na
+ β2(εhEh+Ih)

Nh

)
Sh

dSa
dt

= Λa − β3(εpEa+Ia)Sa

Na
− µaSa,

− (p+ µh)Sh + qVh,
dEa
dt

= β3(εaEa+Ia)Sa

Na
− (α2 + µa)Ea,

dVh
dt

= fΛh + pSh − (q + µh)Vh,
dIa
dt

= α2Ea − (γa + µa + δa)Ia,

dEh
dt

= β1(εaEa+Ia)Sh

Na
+ β2(εhEh+Ih)Sh

Nh
− (α1 + µh)Eh,

dRa
dt

= γaIa − µaRa,
dIh
dt

= α1Eh − (γh + µh + δh)Ih,

dRh
dt

= γhIh − µhRh.

Unlike the previous models, this one considers the possibility of transmission via interactions between susceptible and
exposed individuals. Parameters εh and εa represent the reduced infectiousness of exposed humans (Eh) and animals
(Ea) compared to infectious individuals (Ih and Ia). Furthermore, a fraction f of recruits entering the population
are assumed to be vaccinated and thus enter directly into the vaccinated class Vh. The basic reproduction number of
this model is considerably more complex to compared to the previous ones. It is concluded that reducing the basic
reproduction number below one will eliminate the disease from the human population.

Recognizing that susceptible individuals may vary in their defense mechanisms and susceptibility to infection, [16]
proposed a model that stratifies susceptible humans into low-risk(Sh1), and high-risk (Sh2) groups:

dSh1

dt
= Λh1 −

(β1Ia+β2Ih)Sh1

1+λI2h
− (p+ µh)Sh1 + q1Vh,

dSa
dt

= Λa − β3SaIa − µaSa,

dSh2

dt
= Λh2

− (β5Ia+β6Ih)Sh2

1+λI2h
− (p+ µh)Sh2

+ q2Vh,
dIa
dt

= β3SaIa − (γa + µa + δa)Ia,

dVh
dt

= p(Sh1 + Sh2)− (q1 + q2 + µh)Vh,
dRa
dt

= γaIa − µaRa,

dIh
dt

=
(β1Ia+β2Ih)Sh1

1+λI2h
+

(β5Ia+β6Ih)Sh2

1+λI2h
− (γh + µh + δh)Ih,

dRh
dt

= γhIh + (1− q1 − q2)Vh − µhRh.

This model also incorporates imperfect vaccination, with q1 and q2 representing the failure rates of vaccination among
low-risk and high-risk groups, respectively. The infection rates from animals to low-risk and high-risk humans are
denoted by β1 and β5, respectively. Additionally, the incidence rate is assumed to be of the form kI

1+λI2 , where the term
1+λI2 captures the inhibitory effect-often referred to as a ”psychological effect”-induced by government interventions
such as isolation, quarantine, and public transportation restrictions. The study conducted a detailed dynamical anal-
ysis, examining the existence, uniqueness, positivity, boundedness of solutions, and dependency on initial conditions.
The basic reproduction number is computed as

R0 = max

{
β2 + β4

γh + µh + δh
,

β5

γa + µa + δa

}
.

Stability and bifurcation analyses were performed, and numerical simulations were presented. It was predicted that
an increase in vaccine imperfection rates would lead to a significant decrease in the number of immune individuals
capable of resisting the disease. In general, it is found that vaccination programs help establish high immunity levels
within populations and reduce the number of individuals susceptible to the disease.

Numerous other studies have investigated the impact of vaccination as a single control strategy on Mpox population
dynamics. For instance, [17] extended model (2.1) to include temporary immunity. The same model was also analyzed
with fractional derivatives in [18]. Game-theoretic approaches to evaluate vaccination strategies were explored in [19].
Additionally, several studies focused exclusively on the transmission dynamics of Mpox within human populations and
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the role of vaccination [20, 21]. The environmental contribution to Mpox transmission has been investigated in [22].
In addition, an age-structured modeling approach was applied in the study [23].

Quarantine

Several countries have implemented quarantine measures to mitigate the spread of Mpox. Belgium was the first
to enforce a mandatory 21-day quarantine for infected individuals. The United Kingdom, on the other hand, has
recommended that individuals who have had direct or household contact with confirmed cases self-isolate for 21
days [24]. Quarantine (and isolation) practices immediately break the chain of transmission by isolating infected or
exposed individuals from the community. Therefore, a rapid decrease in the number of cases can be achieved in the
short term. The effects of quarantine interventions have been incorporated into numerous mathematical models of
Mpox transmission. In [25], a model that accounts for quarantined individuals was proposed as follows:

dSh
dt

= Λh − (1− ε) (β1Ia+β2Ih)Sh

Nh
− µhSh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dIh
dt

= (1− ε) (β1Ia+β2Ih)Sh

Nh
− (µh + δh + τ)Ih,

dIa
dt

= β3SaIa
Na

− (µa + δa)Ia,

dQh
dt

= τIh − (µh + (1− ξ)δh + θ)Qh,

dRh
dt

= θQh − µhRh.

In this model, 0 ≤ ε ≤ 1 represents the effectiveness of awareness campaigns, while 0 ≤ ξ ≤ 1 captures the efficacy of
quarantine and treatment. The reproduction numbers for humans and animals are computed as:

Rh
0 =

(1− ε)β2

µh + δh + τ
, Ra

0 =
β3

µa + δa
.

The disease is expected to be eradicated when both Rh
0 < 1 and Ra

0 < 1. It was concluded that public awareness
campaigns and the isolation of infected individuals from susceptibles can significantly reduce the spread of the disease.

The model presented in [26] incorporates the saturation effect in disease transmission:

dSh
dt

= Λh − (β1Ia+β2Ih)Sh

1+λIh
− µhSh,

dSa
dt

= Λa − β3SaIa
1+λIa

− µaSa,

dIh
dt

= (β1Ia+β2Ih)Sh

1+λIh
− (µh + δh + τ)Ih,

dIa
dt

= β3SaIa
1+λIa

− (µa + δa)Ia,

dQh
dt

= τIh − (µh + δh + θ)Qh,

dRh
dt

= θQh − µhRh.

The parameter λ reflects the strength of government interventions such as public restrictions. A detailed dynamical
analysis of the model was conducted. Human and animal reproduction numbers were given as:

Rh
0 =

β2Λh
µh(µh + δh + τ)

, Ra
0 =

β3Λa
µa(µa + δa)

,

and the basic reproduction number defined as max{Rh
0 ,R

a
0}. Three possible equilibrium states were identified: dis-

ease eradication in both populations, persistence in the human population only, and persistence in both populations.
A comprehensive stability analysis performed, and the presence of forward bifurcation at Rh

0 = 1 and Ra
0 = 1 estab-

lished. Sensitivity analysis quantified the influence of parameters on R0, and all theoretical results supported with
simulations. The effectiveness of government interventions in reducing the number of infected humans and animals
was highlighted. Moreover, it was emphasized that minimizing contact with infected humans and animals, as well as
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implementing strategies to reduce migration rates into the population, can have a significant impact on controlling the
disease.

In most of the models existing in the literature, Mpox virus transmission has considered thorough human-to-human,
animal-to-human, and animal-to-animal routes. However, as previously noted, there are several reports and studies
indicating the possibility of human-to-animal transmission of the Mpox virus, particularly from humans to domes-
tic pets [9, 10]. Based on these facts, some mathematical models have been developed to incorporate all possible
transmission routes. For example, in [27], the following mathematical model was proposed:

dSh
dt

= Λh − (β1Ia + β2Ih)Sh − µhSh − ϕQh,
dSa
dt

= Λa − (β3Ia + β4Ih)Sa − µaSa,

dIh
dt

= (β1Ia + β2Ih)Sh − (µh + δh1 + α4 + γh + γt)Ih,
dIa
dt

= (β3Ia + β4Ih)Sa − µaIa,

dQh
dt

= α4Ih − (µh + δh2 + θ + ϕ)Qh,

dRh
dt

= (γh + γt)Ih + θQh − µhRh.

In this model, infected individuals recover either through natural immunity at rate γh or via treatment at rate γt. A
fractional-order dynamical analysis performed, and results validated through numerical simulations. With this model,
which includes all routes of transmission, the authors aimed to prove more realistic predictions about the spread of
the disease.

In [28], different disease-induced mortality rates for infected and quarantine individuals (δh1 and δh2, respectively)
considered. The proposed model is given by:

dSh
dt

= Λh − β1IaSh

Na
− β2IhSh

Nh
− µhSh,

dSa
dt

= Λa − β3IaSa

Na
− µaSa,

dEh
dt

= β1IaSh

Na
+ β2IhSh

Nh
− (α1 + α3 + µh)Eh,

dEa
dt

= β3IaSa

Na
− (µa + α2)Ea,

dIh
dt

= α1Eh − (µh + δh1 + γh)Ih,
dIa
dt

= α2Ea − µaIa,

dQh
dt

= α3Eh − (θ + δh2 + µh)Qh,

dRh
dt

= γhIh + θQh − µhRh.

The study used actual Mpox outbreak data from the United States. Human and animal reproduction numbers calcu-
lated as:

Rh
0 =

β2α1

(α1 + α3 + µh)(µh + δh1 + γh)
, Ra

0 =
β3α2

µa(µa + α2)
,

and the basic reproduction number defined as R0 = max{Rh
0 ,R

a
0}. Stability analysis of the equilibria performed, and

backward bifurcation observed at R0 = 1. Sensitivity analysis also conducted. Results indicated that reducing contact
between humans and animals by eliminating their food source, water, and shelter, regularly disposing of trash, and
decreasing human-to-human transmission can all lead to a decrease in future cases. Avoiding contact with infected
animals and humans, washing hands with soap and water after any contact, and separating infected patients from
healthy individuals are recommended.

Since individuals quarantined due to suspected Mpox infection may or may not be actually infected, [29] proposed a
model that incorporates the diagnostic process. Some suspected cases may test negative and return to the susceptible
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class:
dSh
dt

= Λh − (β1Ia+β2Ih)Sh

Nh
− µhSh + ϕQh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dEh
dt

= (β1Ia+β2Ih)Sh

Nh
− (α1 + α3 + µh)Eh,

dEa
dt

= β3SaIa
Na

− (µa + α2)Ea,

dIh
dt

= α1Eh − (µh + δh + γh)Ih,
dIa
dt

= α2Ea − (µa + δa)Ia,

dQh
dt

= α3Eh − (ϕ+ θ + δh + µh)Qh,

dRh
dt

= γhIh + θQh − µhRh.

The rate at which individuals in quarantine return to the susceptible class after testing negative is denoted by ϕ. The
basic reproduction number is given by:

R0 =
α1β2

(α1 + α3 + µh)(µh + δh + γh)
.

The stability of equilibria investigated, and a backward bifurcation identified at R0 = 1. Sensitivity analysis demon-
strated the impact of various parameters on R0, highlighting the importance of isolation in controlling disease trans-
mission. It was emphasized that the isolation of infected individuals plays a crucial role in reducing disease spread
and in helping to keep the virus under control.

Several other studies have explored the impact of quarantine measures on the transmission dynamics of Mpox.
In [30], four different control measures that can be used to prevent the spread of the virus were considered. It was
found that an optimal control scheme can help reduce the number of infected, quarantined, and exposed individuals
while increasing the number of susceptible and recovered individuals. In [31], it was discovered that the speed at
which humans and animals progress from the exposure stage to the infectious stage is also important factor and may
pose a significant risk by increasing the overall level of Mpox infection. In [32], a fractional order mathematical
model was developed to investigate the co-infection dynamics of Mpox and HIV/AIDS. The findings suggest that an
optimal vaccination strategy combined with improved HIV management could significantly reduce co-infection rates.
In [33], the importance of reducing contacts not only among susceptible and infected humans but also between
rodents is emphasized. The study highlights the necessity of encouraging treatment and medical interventions. The
same model was revisited in [34], where an approximate solution was obtained using a mathematical technique
known as the Laplace Adomain Decomposition Method. This method enables the prediction of outcomes for various
disease management strategies. Additional studies that consider quarantine as a single control strategy can be found
in [35–44].

Hospitalization

Hospitalization is another important control strategy that has been incorporated into several mathematical models of
Mpox transmission. This subsection summarizes representative studies that have explicitly considered hospitalization
as a single control measure. The study given in [45], the following extended model, considering the human-to-animal
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transmission, was analyzed:

dSh
dt

= Λh −
(β1Ia+β2Ih1

+β3Ih2
)Sh

Nh
− µhSh,

dSa
dt

= Λa − β4IaSa

Na
− (β5Ih1

+β6Ih2
)Sa

Nh
− µaSa,

dEh
dt

=
(β1Ia+β2Ih1

+β3Ih2
)Sh

Nh
− (µh + α1)Eh,

dIa
dt

= β4IaSa

Na
+ (β5Ih1+β6Ih2)Sa

Nh
− µaIa,

dIh1

dt
= α1(1− ε)E − (µh + ω1 + α5)Ih1

,

dIh2

dt
= α1εE + ω1Ih1 − (µh + α8 + δh)Ih2 ,

dHh

dt
= α5Ih1

+ α8Ih2
− (µh + η)Hh,

dRh
dt

= ηHh − µhRh.

This model investigates the impact of awareness programs and effective treatment strategies aimed at reducing the
risk of Mpox transmission. The study focused on optimal control strategies designed to reduce the number of exposed
and infected individuals. The effectiveness of the proposed strategies validated thorough numerical simulations, high-
lighting their critical role in controlling the spread of the virus. The study highlights the importance of the model for
key factors in virus control, such as public health interventions and proactive treatments.

In [46], the human population was divided into high-risk and low-risk groups. Additionally, infection stages were
distinguished by asymptomatic, mild symptomatic, and severe symptomatic phases:

dSh1

dt
= (1− π)Λh −

(
β1Ia
Na

+
β2(aP+ηIh1

+Ih2
)

Nh

)
νSh1

− µhSh1
,

dSa
dt

= Λa − β3IaSa

Na
− µaSa,

dSh2

dt
= πΛh −

(
β1Ia
Na

+
β2(aP+ηIh1

+Ih2
)

Nh

)
Sh2 − µhSh2 ,

dEa
dt

= β3IaSa

Na
− (µa + α2)Ea,

dEh
dt

=
(
β1Ia
Na

+
β2(aP+ηIh1

+Ih2
)

Nh

)
(νSh1

+ Sh2
)− (µh + α6)Eh,

dIa
dt

= α2Ea − (µa + δa + γa)Ia,

dP

dt
= α6Eh − (µh + α7)P,

dRa
dt

= γaIa − µaRa,

dIh1

dt
= α7P − (µh + ω1 + α5 + γ1)Ih1

,

dIh2

dt
= ω1Ih1 − (µh + δh1 + α8 + γ2)Ih2 ,

dHh

dt
= α5Ih1

+ α8Ih2
− (µh + δh2 + η)Hh,

dRh
dt

= γ1Ih1 + γ2Ih2 + ηH − µhRh.

In this model, Sh1 and Sh2 represent the low-risk and high-risk susceptible humans, respectively. P denotes the
asymptomatic infectious class, while Ih1

and Ih2
represent mild and severe symptomatic individuals. A dynamical

analysis, including stability, bifurcation, and sensitivity, conducted. Numerical simulations demonstrated that high-
risk regions without adequate intervention face elevated outbreak risks. Contact tracing and early detection in these
groups shown to be effective in mitigating Mpox spread. The importance of surveillance in animal populations also
emphasized. Additional Mpox models that focus exclusively on hospitalization as a single control measure can be
found in [47–49].

Isolation

Isolation is another relevant control strategy that has been incorporated into Mpox transmission models. It aims to re-
duce human-to-human transmission by identifying and separating infected individuals from the susceptible population.
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To date, the only mathematical model that exclusively considers isolation is presented in [50]:

dSh
dt

= Λh − (β1Ia+β2(Ih+θmJh))Sh

Nh
− µhSh,

dSa
dt

= Λa − β3IaSa

Na
− µaSa,

dEh
dt

= (β1Ia+β2(Ih+θmJh))Sh

Nh
− (µh + α1)Eh,

dIa
dt

= β3IaSa

Na
− µaIa,

dIh
dt

= α1Eh − (µh + δh + dθh + k)Ih,

dJh
dt

= kIh − (d+ µh)Jh,

dRh
dt

= dθhIh + dJh − µhRh.

Here k denotes the isolation rate based on surveillance and contact tracing efforts. The parameter d represents the
natural recovery rate of infected individuals as well as recovery rate of isolated individuals through treatment. θh is a
modification parameter for the recovery rate of infected individuals, while θm is a modification parameter that adjusts
the transmission rate of isolated individuals. The fundamental dynamics of the model were analyzed basically. An
optimal control study also carried out by incorporating four control variables aimed at preventing Mpox transmission
from animals to humans and from human to human, through preventive measures, isolation of infected individuals
via contact tracing, and treatment of isolated individuals. Furthermore, a cost-effectiveness analysis was performed
to identify the most-effective control strategy among all possible combinations of these control measures. The results
suggest that strategies to prevent animal to human transmission are the most economical and effective approach.

2.2 Double-Strategy Models

In many studies, models have been proposed that incorporate two or more of the control strategies discussed in the
previous subsection. For example, in [51], a model is proposed that includes the control strategies of both vaccination
and quarantine:

dSh
dt

= Λh − (β1Ia + β2Ih)Sh − (µh + r1u1)Sh + σRh,
dSa
dt

= Λa − β3SaIa + ξIa − µaSa,

dEh
dt

= (β1Ia + β2Ih)Sh − (α1 + α3 + µh)Eh,
dIa
dt

= β3SaIa − (ξ + µa + δa)Ia,

dIh
dt

= α1Eh − (γh + r2u2 + µh + δh1)Ih,

dQh
dt

= α3Eh − (θ + µh + δh2)Qh,

dRh
dt

= r1u1Sh + (γh + r2u2)Ih + θQh − (σ + µh)Rh.

Here, u1 and u2 are control variables representing vaccination and treatment, respectively. The parameters r1 and r2

denote the effectiveness of these two controls. It is assumed that recovered individuals gain temporary immunity, and
a fraction σ of them return to the susceptible class after losing immunity. A fractional-order version of the model is
also developed and analyzed. The basic reproduction number R0 is computed, and its role as a threshold parameter
in determining system stability is demonstrated. It is shown that transcritical bifurcations may occur at Rh

0 = 1 and
Ra

0 = 1. Optimal control theory is employed to derive strategies that minimize both disease prevalence and the cost of
implementing controls. Sensitivity analysis reveals the influence of key parameters on R0. All findings are supported
by numerical simulations showing that treatment and vaccination, as well as quarantine measures, significantly reduce
Mpox transmission in the human population.
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In [52], a mathematical model including vaccination and quarantine compartments is proposed:

dSh
dt

= Λh − (β1Ia+β2Ih)Sh

Nh
− (µh + p)Sh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dVh
dt

= pSh − µhVh,
dIa
dt

= β3SaIa
Na

− µaIa,

dEh
dt

= (β1Ia+β2Ih)Sh

Nh
− (α1 + µh)Eh,

dIh
dt

= α1Eh − (µh + δh + γh + α4)Ih,

dQh
dt

= α4Ih − (θ + µh + δh)Qh,

dRh
dt

= θQh + γhIh − µhRh.

A fuzzy fractional-order analysis of this model is conducted. The significance of fuzzy fractional differential equations
stems from their capacity to more accurately describe transmission dynamics by accounting for non-local effects, which
capture the memory and hereditary characteristics inherent in the spread of infectious diseases. This study highlights
the significant role of vaccination in reducing disease transmission, demonstrating the practical usefulness of fuzzy
fractional techniques in epidemiological modeling.

In [53], a model is proposed in which susceptible humans can become infected not only through contact with
infectious individuals but also through environmental contamination caused by infected humans and animals:

dSh
dt

= Λh − β1IhSh

Nh
− β2IaSh

Na
− β7BSh

K+B − (µh + p)Sh + qVh + ϕQh,
dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dVh
dt

= pSh − (µh + q)Vh,
dIa
dt

= β3SaIa
Na

− µaIa,

dEh
dt

= β1IhSh

Nh
− β2IaSh

Na
− β7BSh

K+B − (α1 + α3 + µh)Eh,
dB

dt
= ρ1Ih + ρ2Ia − µBB,

dIh
dt

= α1Eh + ζQh − (µh + δh + γh)Ih,

dQh
dt

= α3Eh − (ϕ+ ζ + µh)QH ,

dRh
dt

= γhIh − µhRh.

Here, B(t) represents the environmental contamination compartment. The parameter K denotes the concentration
of Mpox pathogens in the environment, which increases the transmission rate by 50%. The environmental virus con-
centration increases when infected humans and rodents shed the virus at rates ρ1 and ρ2, respectively. The model’s
equilibrium points and basic reproduction number are derived, and it is shown that R0 serves as a threshold for sta-
bility. The sensitivity analysis revealed that environmental parameters, such as the environmental transmission rate,
the decay rate of Mpox virus in the environment, and the shedding rate of infected humans, play an important role
in the spread of Mpox. These findings indicate that quarantine measures alone are insufficient and should be comple-
mented by additional interventions to effectively control the disease. It also suggests that healthcare practitioners and
policy-makers should focus on increasing the environmental decay rate of the monkeypox virus while reducing both
the environmental transmission rate and the shedding rate of infected individuals.

In [54], vaccination is examined in a broader context. A portion p1 of new recruits to the human population is
assumed to be vaccinated at entry and directly enters the vaccinated class. Additionally, both susceptible and recovered
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individuals can be vaccinated at rates p2 and p3, respectively. The model equations are given by:

dSh
dt

= Λh(1− p1)− (β1Ia+β2Ih)Sh

Nh
− (µh + p2)Sh + qVh + ϕQh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dVh
dt

= Λhp1 + p2Sh + p3Rh − (µh + q)Vh,
dEa
dt

= β3SaIa
Na

− (µa + α2)Ea,

dEh
dt

= (β1Ia+β2Ih)Sh

Nh
− (α1 + α3 + µh)Eh,

dIa
dt

= α2Ea − (µa + δa)Ia,

dIh
dt

= α1Eh + ζQh − (µh + δh + γh)Ih,

dQh
dt

= α3Eh − (ϕ+ ζ + µh + δh)Qh,

dRh
dt

= γhIh − (µh + p3)Rh.

It is also assumed that quarantined individuals become infected at a rate ζ. The equilibrium points are determined, and
their stability behavior is analyzed. The basic reproduction numbers is computed, and sensitivity analysis is conducted.
The findings demonstrate that vaccination, quarantine, and avoiding contact with infected animals are effective strate-
gies for reducing the spread of the virus. Overall, the study indicates that, within the proposed mathematical model,
enhancing vaccination coverage, implementing quarantine measures, and minimizing contact with infected animals
can lead to the eradication of the virus. The transmission dynamics of the human population were the focus in [55],
with considering the vaccination and quarantine strategies.

In [56], a compartmental model was proposed incorporating individuals under quarantine and those hospitalized:

dSh
dt

= Λh − (β1Ia+β2Ih)Sh

Nh
− µhSh + ϕQh,

dSa
dt

= Λa − β3SaIa
Na

− µaSa,

dEh
dt

= (β1Ia+β2Ih)Sh

Nh
− (α1 + α3 + +µh)Eh,

dEa
dt

= β3SaIa
Na

− (µa + α3)Ea,

dIh
dt

= α1Eh − (γh + µh + δh + α5)Ih,
dIa
dt

= α3Ea − (δa + µa)Ia,

dQh
dt

= α3Eh − (µh + δh + ϕ+ θ)Qh,

dHh

dt
= α5Ih − (µh + δh + η)Hh,

dRh
dt

= ηHh + γhIh + θQh − (µh + δh)Rh.

In this model, infected individuals may be hospitalized at a rate α5, and recover at a rate η. A fractional-order dynami-
cal analysis conducted, emphasizing the effectiveness of hospitalization in reducing disease transmission. An in-depth
analysis of intervention strategies and their potential impact on disease control was conducted. It was demonstrated
that hospitalizing infected individuals significantly reduces disease transmission.

In the model proposed by [57], the dynamics of infected individuals transitioning to quarantine, hospitalization, or
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recovery were simultaneously considered:

dSh
dt

= Λh − (β1Ia + β2Ih)Sh − µhSh,
dSa
dt

= Λa − β3IaSa − µaSa,

dEh
dt

= (β1Ia + β2Ih)Sh − (α1 + µh)Eh,
dEa
dt

= β3IaSa − (α3 + µa)Ea,

dIh
dt

= α1Eh − (γh + µh + δh1 + α4 + α5)Ih,
dIa
dt

= α3Ea − µaIa,

dQh
dt

= α4Ih − (µh + δh2 + ν + θ)Qh,

dHh

dt
= α5Ih + νQh − (µh + δh3 + η)Hh,

dRh
dt

= γhIh + θQh + ηHh − µhRh.

Individuals in quarantine may either recover or be hospitalized. A fractional-order dynamical analysis performed,
and both human and animal reproduction numbers derived. The model was calibrated and validated using weekly
Mpox case data from the human population in the United States. It was concluded that simultaneously increasing
quarantine and hospitalization rates has a significant impact on reducing the basic reproduction number. The model
later extended in [58] using different fractional modeling frameworks.

In another study that simultaneously considers both quarantine and hospitalization strategies [59], the impact of
a contaminated environment on the transmission dynamics was also investigated. In addition, readers may also
find it useful to look into [60,61] for models that deal with vaccination and isolation, [62,63] for models that include
quarantine and isolation, and [64–67] for models that examine the combined effects of vaccination and hospitalization.

2.3 Multiple-Strategy Models

Models incorporating more than two control strategies can provide a more comprehensive framework for analyzing
Mpox transmission dynamics. Such models aim to capture the combined effects of multiple interventions, which can
lead to more realistic predictions and support the design of integrated control policies. This subsection highlights
representative studies that simultaneously implemented three control measures. Only a few studies exist that include
three control strategies. In [68], a model introduced including a compartment for severe complications, along with
awareness, vaccination, quarantine, and hospitalization as control measures:

dSh
dt

= Λh − (1− κ)(β1Ia + β2Ih)Sh − (µh + p)Sh + qVh,
dSa
dt

= Λa − β3SaIa − µaSa,

dVh
dt

= pSh − (µh + q)Vh,
dIa
dt

= β3SaIa − µaIa,

dEh
dt

= (1− κ)(β1Ia + β2Ih)Sh − (µh + α1)Eh,

dIh1

dt
= α1Eh − (µh + δh1 + α4 + α5 + ω1)Ih1

,

dQh
dt

= α4Ih1
− (µh + δh2 + ν + θ)Qh,

dHh

dt
= α5Ih1

+ νQh − (µh + δh3 + ω2 + η)Hh,

dIh2

dt
= ω1Ih1

+ ω2Hh − (µh + δh4 + γc)Ih2
,

dRh
dt

= θQh + ηH + γcIh2 − µhRh.
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Here, Ih2
represents individuals with severe complications, such as those affecting the lungs. The awareness level is

represented by κ. The model demonstrates multiple pathways for infected individuals, including quarantine, hospital-
ization, and progression to severe illness. Human and animal reproduction numbers are derived as:

Rh
0 = α1β2Λh(1−κ)(µh+q)

µh(µh+q+p)(µh+α1)(µh+δh1+α4+α5+ω1) , Ra
0 = pβ3Λa

µh(µh+q+p)

and R0 = max{Rh
0 ,R

a
0}. Transcritical bifurcations observed at the thresholds Rh

0 = 1 and Ra
0 = 1. Simulation

results confirmed that awareness, vaccination, quarantine, and treatment significantly reduced Mpox transmission. For
additional modeling studies that incorporate three or more of these control strategies, readers may refer to [69,70].

3 Results
This review identified and analyzed a diverse range of mathematical models developed to study the transmission
dynamics and control strategies of Mpox. These models vary in structure and complexity, incorporating features such
as vaccination, quarantine, isolation, hospitalization, awareness interventions, risk-group stratification, and optimal
control measures. More studies still focus on single or double intervention strategies, whereas models that integrate
multiple simultaneous interventions are relatively rare but demonstrate a stronger capacity to capture the complex
dynamics of Mpox transmission. While animal-to-human transmission widely modeled, only a limited number of
studies explicitly incorporate bidirectional transmission routes between humans and animals, which is crucial given
the zoonotic nature of Mpox. In summary, while the existing literature provides valuable insights, it remains relatively
limited in combining multiple interventions, bidirectional transmission pathways, and advanced modeling approaches.

In addition to the studies summarized far, several other Mpox modeling studies demonstrate unique approaches that
do not directly include the control strategies specified above but still provide important insights. For example, in [71],
both exposed and infected human compartments were stratified by risk-groups and incorporated into the model.
Control measures representing healthy lifestyle behaviors and antiviral treatments were included to demonstrate the
effectiveness of these interventions in reducing Mpox cases. In the thesis presented by [72], an in-depth analysis of
a basic model was conducted, and the results support the prediction that if Mpox becomes endemic in the animal
population, it will likely become endemic in the human population as well. In [73], a separate Th compartment
representing treated individuals was added to the model. An optimal control problem was formulated to minimize
the number of infected individuals and reduce the costs of prevention and treatment strategies, demonstrating their
impact on disease spread. The study [74] considered an age-structured and meta-population model, revealing that
removing the age structure increases the estimated basic reproduction number in humans and raising concerns about
interventions such as culling. Finally, in [75], a fractional-order model was proposed and analyzed. The existence
of an optimal control strategy that minimizes both the number of infected individuals and the costs of treatment
and prevention was established, showing that implementing these strategies together is necessary and effective in
preventing outbreaks.

4 Discussion
Obtaining analytical solutions for nonlinear differential equation systems are often difficult or even impossible. Con-
sequently, various numerical methods are used to understand the behavior of solutions. In the mathematical epidemi-
ology literature, the most commonly used methods are the standard Euler and Runge-Kutta methods. However, some
nonstandard finite difference schemes can also be developed and applied. In addition, a model can be constructed
directly as a difference equation system. Discrete-time approaches can be particularly advantageous when data are
collected at regular intervals or contact patterns. Continuous models generally assume that changes in the population,
such as births and deaths, occur continuously. However, many plant or animal populations have discrete generations
and reproduce at specific times of the year, with population counts therefore conducted at certain times. Moreover,
discrete models can also be used to approximate continuous dynamics in numerical simulations, providing computa-
tionally efficient solutions while preserving the key properties of the continuous model. For these reasons, continuous
models can be discretized, or models can be developed directly in discrete form to better capture the transmission
dynamics of Mpox. To the best of the author’s knowledge, the existing Mpox modeling literature consists entirely of
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continuous models. Thus, the development of discrete-time Mpox models represents a promising avenue for future
research.

When we think about the early stages of an outbreak, it’s clear that transmission events can be pretty random.
That’s why using stochastic modeling approaches can really enhance the realism and predictive accuracy of Mpox
transmission models. These methods are especially useful in small populations, emerging hotspots, or situations
where spreading occurs, as randomness plays a huge role in these scenarios. Stochastic models are really useful for
estimating the changes of an outbreak occurring, the odds of a disease fading away, and the unpredictable nature of an
epidemic’s trajectory, things that deterministic models often miss. It would be fantastic for future research to combine
deterministic frameworks with stochastic simulations. This could really enhance public health preparedness and risk
assessment in uncertain situations.

Beyond these methodological considerations, there is clear potential for further development of models that explic-
itly incorporate human-to-animal transmission pathways of Mpox. Given the complex interactions between humans
and animals, including domestic pets, such models can provide a more comprehensive understanding of the disease
dynamics and help design more effective control strategies. Finally, extending models to include age-structured pop-
ulations remains essential, but there is also a clear opportunity to develop gender-structured models. Such models
can capture differential susceptibility, contact patterns, and behavioral factors that influence transmission dynamics
between different demographic groups, thereby refining intervention strategies.

Despite the richness of existing models, several gaps and avenues for future research remain as discussed in pre-
vious section. This review not only synthesizes the existing mathematical modeling studies of Mpox but also lays
the groundwork for advising modeling efforts that are more comprehensive, realistic, and aligned with the nature of
Mpox transmission. These enhanced models will be effective in guiding government and health policies, as well as
control strategies, aimed at mitigating the impact of Mpox outbreaks globally. By addressing these methodological and
structural gaps, future models can provide more robust insights that support the design of effective, evidence-based
intervention strategies.

5 Conclusion
This review has provided a comprehensive synthesis and classification of mathematical models developed to under-
stand the transmission dynamics and control strategies of Mpox. While significant progress has been made, the find-
ings highlight clear ares for improvement. Models that combine multiple intervention strategies, include bidirectional
human-animal transmission, and use advanced techniques such as fractional calculus, optimal control, discrete-time
frameworks, and stochastic approaches remain under represented but hold significant potential.

Future modeling efforts should prioritize:

• Combining multiple simultaneous interventions in unified frameworks.

• Developing discrete-time and stochastic models to better capture real-world uncertainty.

• Explicitly modeling bidirectional transmission routes between humans and animals.

• Expanding demographic structures, such as age and gender stratification.

Environmental factors as well as risk groups based on awareness levels or immune status can also be incorporated
into models to better capture the complexity of real-world dynamics. Addressing these directions will advance the
understanding of Mpox dynamics and provide a stronger scientific basis for designing effective public health policies
to mitigate the impact of future outbreaks. This review not only synthesizes the existing mathematical modeling
studies of Mpox but also lays the groundwork for advising modeling efforts that are more comprehensive, realistic,
and aligned with the nature of Mpox transmission. These enhanced models will be effective in guiding government
and health policies, as well as control strategies, aimed at mitigating the impact of Mpox outbreaks globally.
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Reference Compartments Modeling Approach Control Strategies
Conducted Analysis

[13] Sh,Vh,Eh,Ih,Rh Integer Order Vaccination Feasible region, R0, E0 LAS and GAS,
Sa,Ea,Ia,Ra Sensitivity

[14] Sh,Vh,Ih,Rh Integer Order Vaccination Feasible region, R0, E0 LAS and GAS,
Sa,Ia,Ra Sensitivity

[15] Sh,Vh,Eh,Ih,Rh Integer Order Vaccination Feasible region, R0Sa,Ea,Ia,Ra

[16] Sh1 ,Sh2 ,Vh,Ih,Rh Integer Order Vaccination Feasible region, R0, E0 LAS, Bifurcation,
Sa,Ia,Ra Risk-group

[17] Sh,Vh,Eh,Ih,Rh Integer Order Vaccination Feasible region, R0, E0 LAS and GAS,
Sa,Ea,Ia,Ra E∗ LAS, Sensitivity

[18] Sh,Vh,Eh,Ih,Rh Fractional Order Vaccination Feasible region, R0, E0 and E∗ LAS,
Sa,Ea,Ia,Ra Sensitivity

[19] Sh,Vh,Eh,Ih,Rh Game-theoretic Vaccination Existence of equilibria, Herd immunity and
Sa,Ea,Ia,Ra Nash equilibrium vacc. rates, Sensitivity

[20] Sh,Vh,Eh,Ih,Rh Game-theoretic Vaccination Vacc. game, Analysis of Nash equilibria,
Sensitivity, Numerical Analysis

[21] Sh,Vh,Eh,Ih1 ,Ih2 ,Rh Integer Order Vaccination Feasible region, R0, E0 LAS and GAS,
Bifurcation

[22] Sh,Vh,Eh,Ih,Rh Fractional Order Vaccination Feasible region, R0, E0 LAS, E∗ GAS
Sa,Ea,Ia, B

[23] S1
h,S

2
h,V

1
h ,V

2
h ,E

1
h,E

2
h,I

1
h, I

2
h, Age-structured Vaccination R0, E0 GAS

I1h1
, I2h2

, R1
h, R

2
h, Sa,Ia,Ra

[25] Sh,Ih,Qh,Rh Integer Order Quarantine R0, E0 LAS and GAS
Sa,Ia

[26] Sh,Ih,Qh,Rh Integer Order Quarantine Feasible region, R0, E0, E
∗ and E∗∗ LAS

Sa,Ia and GAS, Bifurcation, Sensitivity

[27] Sh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, Numerical analysis
Sa,Ia

[28] Sh,Eh,Ih,Qh,Rh Integer Order Quarantine Feasible region, R0, E0 LAS, E∗ GAS,
Sa,Ea,Ia Sensitivity

[29] Sh,Eh,Ih,Qh,Rh Integer Order Quarantine Feasible region, R0, E0 GAS, E∗ LAS,
Sa,Ea,Ia Bifurcation

[30] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, E0 and E∗ LAS,
Sa,Ea,Ia Optimal control

[31] Sh, ,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, E0 LAS and GAS,
Sa,Ea,Ia Sensitivity

[32] Sh1 ,Sh2 ,Eh1 ,Eh2 ,Ih1 ,Ih2 , Fractional Order Quarantine Feasible region, R0, Risk-group,
Qh1 ,Qh2 ,Rh1 ,Rh2 , Sa,Ia Optimal control

[33] Sh,Eh,Ih,Qh,Th,Rh Integer Order Quarantine Feasible region, R0, E0 LAS-GAS,
Sa,Ea,Ia E∗ stability, Sensitivity

[34] Sh,Eh,Ih,Qh,Th,Rh Fractional Order Quarantine Feasible region, R0, E0 LAS-GAS,
Sa,Ea,Ia Numerical analysis

[35] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, Numerical analysis
Sa,Ea,Ia

[36] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, E0 LAS and GAS,
Sa,Ea,Ia E∗ LAS

[37] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, E0 LAS, Numerical analysis
Sa,Ea,Ia

[38] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine E0 LAS, Numerical analysis
Sa,Ea,Ia

[39] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, E0 and E∗ LAS,
Sa,Ea,Ia Numerical analysis

[40] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, E∗ GAS, Numerical analysis
Sa,Ea,Ia

Table 2: Summary of modeling features in the reviewed Mpox literature.
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Reference Compartments Modeling Approach Control Strategies
Conducted Analysis

[41] Sh,Ih,Qh,Rh Integer Order Quarantine R0, E0 LAS
Sa,Ea,Ia

[42] Sh1 ,Sh2 ,Eh1 ,Eh2 ,Ih1 ,Ih2 , Fractional Order Quarantine Feasible region, R0, Risk-group,
Qh1 ,Qh2 ,Rh1 ,Rh2 , Sa,Ia Optimal control

[43] Sh,Eh,Ih,Qh,Rh Integer Order Quarantine Feasible region, E0 LAS-GAS,
E∗ LAS-GAS, Sensitivity

[44] Sh,Eh,Ih,Qh,Rh Fractional Order Quarantine Feasible region, R0, E0 LAS-GAS,
Sa,Ea,Ia E∗ LAS, Sensitivity, Optimal control

[45] Sh,Eh,Ih1 ,Ih2 ,Hh,Rh Integer Order Hospitalization Feasible region, Risk-group, Optimal
Sa,Ia control

[46] Sh1 ,Sh2 ,Eh,P,Ih1 ,Ih2 ,Hh,Rh Integer Order Hospitalization Feasible region, R0, E0 LAS, E∗ GAS,
Sa,Eh,Ia,Ra Bifurcation, Sensitivity, Risk-group

[47] Sh,Eh,Ih1 ,Ih2 ,Hh,Rh Integer Order Hospitalization Feasible region, R0, E0 LAS-GAS, E∗

Sa,Ia,Ra GAS, Bifurcation, Sensitivity

[48] Sh,Eh,Ih,Hh,Rh Fractional Order Hospitalization Feasible region, R0, E0 LAS
Sa,Ea,Ia

[49] Sh,Eh,Ih,Hh,Rh Fractional Order Hospitalization Numerical analysis
Sa,Ea,Ia

[50] Sh,Eh,Ih,Jh,Rh Integer Order Isolation Feasible region, R0, E0 LAS,
Sa,Ia Sensitivity, Optimal control

[51] Sh, ,Eh,Ih,Qh,Rh Fractional Order Vaccination, Quarantine Feasible region, R0, E0, E
∗, E∗∗ LAS-GAS

Sa,Ia Bifurcation, Sensitivity, Optimal control

[52] Sh,Vh,Eh,Ih,Qh,Rh Fractional Order Vaccination, Quarantine Numerical analysis
Sa,Ia

[53] Sh,Vh,Eh,Ih,Qh,Rh Integer Order Vaccination, Quarantine Fesabile region, R0, E0 and E∗∗ LAS and
Sa,Ia,B GAS, Bifurcation, Sensitivity

[54] Sh,Vh,Eh,Ih,Qh,Rh Integer Order Vaccination, Quarantine Fesabile region, R0, E0 LAS and GAS,
Sa,Ea,Ia E∗ LAS, Sensitivity

[55] Sh,Vh,Eh,Ih,Qh,Rh Fractional Order Vaccination, Quarantine Feasible region, R0, E0 LAS
Sa,Ea,Ia,Ra

[56] Sh,Eh,Ih,Qh,Hh,Rh Fractional Order Quarantine, Hospitalization Feasible region, R0, Sensitivity
Sa,Ea,Ia

[57] Sh,Eh,Ih,Qh,Hh,Rh Fractional Order Quarantine, Hospitalization Feasible region, R0, E0, E
∗ and

Sa,Ea,Ia E∗∗ LAS and GAS, Sensitivity

[58] Sh,Eh,Ih,Qh,Hh,Rh Fractional Order Quarantine, Hospitalization Feasible region, Numerical analysis
Sa,Ea,Ia

[59] Sh,Eh,Ih1 ,Ih2 , Qh, Hh,Rh Integer Order Quarantine, Hospitalization Feasible region, R0, E0 and E∗∗ GAS,
Sa,Ea,Ia, B Risk-group, Optimal control

[60] Sh,Vh,Eh,Ih1 ,Ih2 ,Jh,Rh Integer Order Vaccination, Isolation Feasible region, R0, E0 LAS-GAS, E∗

Sa,Ea,Ia,Ra GAS, Risk-group, Bifurcation, Sensitivity

[61] Sh1 ,Sh2 ,Eh,Ih,Rh Integer Order Vaccination, Isolation Feasible region, R0, E0 LAS,
Sa,Ea,Ia Risk-group, Sensitivity

[62] Sh,Eh,Ih,Jh,Qh,Rh Integer Order Quarantine, Isolation Feasible region, R0, E0 LAS-GAS,
Sa,Ia Bifurcation, Sensitivity

[63] Sh,Eh,Ih,Jh,Qh,Rh Fractional Order Quarantine, Isolation Feasible region, Stability, Numerical analysis
Sa,Ia

[64] Sh,Vh,Eh,Ih,, Hh,Rh Integer Order Vaccination, Hospitalization Feasible region, R0, E0 LAS and GAS,
Sa,Ea,Ia Bifurcation, Optimal control

[65] Sh,Vh,Eh,Ih,Hh,Rh Integer Order Vaccination, Hospitalization Feasible region, E0 LAS-GAS, Sensitivity
Sa,Ea,Ia Optimal control

[66] Sh,Vh,Eh,Ih,Hh,Rh Fractional Order Vaccination, Hospitalization Feasible region, R0, E0 LAS-GAS,
Sa,Ea,Ia E∗ GAS, Sensitivity, Optimal control

[67] Sh,Vh,Ih1 ,Ih2 ,Hh,Rh Fractional Order Vaccination, Hospitalization Feasible region, R0, Stability,
Sa,Ia Risk-group

[68] Sh,Vh,Eh,Ih1 ,Ih2 ,Qh,Hh,Rh Integer Order Vaccination, Quarantine, Feasible region, R0, E0 and E∗∗ LAS,
Sa,Ia Hospitalization E∗ GAS, Bifurcation, Risk-group

[69] Sh,Eh,Ih,Qh,Hh,Rh Fractional Order Vaccination, Quarantine, Feasible region, E0, E
∗ and E∗∗ LAS,

Sa,Ea,Ia Hospitalization Optimal control

Table 3: Summary of modeling features in the reviewed Mpox literature (continued).
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[70] Sh,Vh,Eh,Ih,Qh,Hh,Rh Fractional Order Vaccination, Quarantine, Feasible region, R0, E0 GAS
Sa,Ea,Ia Hospitalization

[71] Sh,Eh1 ,Eh2 ,Ih1 ,Ih2 ,Rh Integer Order - Numerical analysis, Optimal control
Sa,Ea,Ia Sensitivity

[72] Sh,Ih,Rh Integer Order - Feasible region, R0, E0 LAS-GAS,
Sa,Ia,Ra E∗ LAS-GAS

[73] Sh,Ih,Th,Rh Integer Order - Feasible region, R0, E0 and E∗ LAS,
Sa,Ia,Ra Sensitivity, Optimal control

[74] S1
h,S

2
h,S

1
h1
,S2

h2
,I1h,I

2
h, Age-structured - R0, E0 LAS

R1
h,R

2
h,Sa,Ia,Ra

[75] Sh,Ih,Th,Rh Fractional Order - Feasible region, R0, E0 LAS, E∗ LAS,
Sa,Ia,Ra Optimal control

Table 4: Summary of modeling features in the reviewed Mpox literature (continued).
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