Analysis of Mathematical Listeriosis Model in Ready-to-Eat Food
Keywords:
RTE Model, Mathematical model, Basic reproduction number, Contaminated food products, Listeria monocytogeneAbstract
This study emphasis on transmission of Listeriosis from ready-to-eat foods employing a four compartment defined as classses like susceptible S(t), Exposed E(t), Infected I(t) and Recovered R(t) of non-linear model. Some RTE foods contains Listeria Which causes Listeriosis. we prosposed four compartmental model and analysis of equilibrium point, one is disease free equilibrium point(DFE) and Endemic equlibrium points. Local stability of equilibrium established. The findings of this research work could be used to provide basis in order to curb Listeriosis from ready-to-eat processed food items. This study analyzes a mathematical model designed to understand the dynamics of listeriosis transmission through ready-to-eat (RTE) foods. The model integrates factors such as cross-contamination in food processing environments and the role of contaminated food products in spreading the disease. It categorizes the system into three equilibria: disease-free, Listeria-free, and endemic states. The analysis reveals that controlling listeriosis effectively requires the removal of contaminated food products and reducing environmental contamination. The model's findings support the development of optimal control strategies to mitigate listeriosis outbreaks associated with RTE foods
References
Stout, A., Van Stelten-Carlson, A., Marquis, H., Ballou, M., Reilly, B., Loneragan, G.H.,Nightingale, K. and Ivanek, R., Public health impact of foodborne exposure to naturally occurring virulence-attenuated Listeria monocytogenes: inference from mouse and mathematical models, Interface Focus, 10(1), p.20190046, 2020.
Osman, S., Otoo, D. and Sebil, C., Analysis of Listeriosis Transmission Dynamics with Optimal Control, Applied Mathematics, 11(7), 712-737, 2020.
Osman, S. Makinde, O.D. and Theuri, D.M., Stability analysis and modelling of Listeriosis dynamics in human and animal populations, Global Journal of Pure and Appllied Mathathematics,14(1), 115-137, 2018.
Witbooi, P.J, Africa, C., Christoffels, A., and Ahmed, I.H.I., A population model for the 2017/18 Listeriosis outbreak in South Africa’, Plos one, 15(3), p.e0229901, 2020.
Chukwu, C. W, and Nyabadza, F., A theoretical model of Listeriosis Driven by cross-contamination of readyto- eat food products, International Journal of Mathematics and Mathematical Science, Hindawi, 14, Article-ID 2020,2020.
Bennion, J.R., Sorvillo, F.,Wise, M.E., Krishna, S., Mascola, L., Decreasing Listeriosis mortality in the United States, Clinical infectious diseases, 47(7), 867-874,2008.
Hu, k. Renly, S., Edlund, S., Davis, m., and Kaufman, J., A modeling framework to accelerate food-borne outbreak investigations, Food Control, 59, 53-58, 2016.
World Health Organization, World Health Organization, International travel and health, https://www.who.int/ith/diseases/Listeriosis/en/, Accessed 26 June 2020.
Center for disease Control, https://www.cdc.gov/Listeria/prevention.html, Accessed 26 May 2020
Almudena, H., and A. Payeras-Cifre,., What is new in Listeriosis?, BioMedical research international, 2014, Article ID 358051, 7 pages, 2014. https://doi.org/10.1155/2014/358051
Lanzas, C., Lu, Z., and Gr¨ohn, Y.T., Mathematical modeling of the transmission and control of foodborne pathogens and antimicrobial resistance at preharvest, Foodborne pathogens and disease, 8(1), 1-10, 2011.
Makinde, O.D., and Okosun, K.O., Impact of chemo-therapy on optimal control of malaria disease with infected immigrants, Biosystems, 104(1), 32-41, 2011
Omondi, E.O., Orwa, T.O., and Nyabadza, F., Application of optimal control to the onchocerciasis transmission model with treatment, Mathematical Biosciences, 297,.43-57, 2018. [14] Swaminathan, B. and Gerner-Smidt, P., The epidemiology of human Listeriosis, Microbes and infection, 9(10), 1236-1243, 2007. 74
Van den Driessche, P. and Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission’, Mathematical bioscience, 180(1-2), 29-48, 2002.
Blower, S.M., and Dowlatabadi, H., Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, International Statistical Review/Revue Internationale de Statistique, 229-43, 1994.
Pontryagin, L. S, Boltyanskii, V. G, Gamkrelidze, R. V, and Mishchenko E. F., TheMathematical Theory of Optimal Processes, Interscience Publishers, New York,1962.
Lenhart, S., and Workman, J.T., Optimal control applied to biological models’, Chapman and Hall/CRC, 2007.
O. Mejlholm, P. Dalgaard, Modeling and predicting the growth boundary of listeria monocytogenes in lightly preserved seafood, J. Food Prot. 70 (1) (2007),70 84, http://dx.doi.org/10.4315/0362-028X-70.1.70.
R. Jiang, X. Wang, W. Wang, et al., Modelling the cross-contamination of listeria monocytogenes in pork during bowl chopping, Int. J. Food Sci. Tech. 53(3), (2018) 837 846, http://dx.doi.org/10.1111/ijfs.13660.
W. Chukwu, F. Nyabadza, J.K.K. Asamoah, A mathematical model and optimal control for listeriosis disease from ready-to-eat food products, 2020, http://dx. doi.org/10.1101/2020.10.11.20210856, medRxiv.
S. Osman, O.D.A. Makinde, Mathematical model for co-infection of listeriosis and anthrax diseases, Int. J. Math. Math. Sci. (2018) http://dx.doi.org/10.1155/ 2018/1725671.
C.W. Chukwu, F. Nyabadza, A theoretical model of listeriosis driven by cross contamination of ready-to-eat food products, Int. J. Math. Math. Sci. (2020) 14,http://dx.doi.org/10.1155/2020/9207403.
S. Osman, O.D. Makinde, D.M. Theuri, Mathematical modelling of listeriosis epidemics in animal and human population with optimal control, Tamkang J.Math. (2020) http://dx.doi.org/10.5556/j.tkjm.51.2020.2860. [25] S. Osman, O.D. Makinde, D.M. Theuri, Stability analysis and modelling of listeriosis dynamics in human and animal populations, Glob. J. Pure Appl. Math.14 (1) (2018) 115-137.
C.W. Chukwu, J. Mushanyu, M.L. Juga, A mathematical model for co-dynamics of listeriosis and bacterial meningitis diseases, Commun. Math. Biol. Neurosci. (2020) http://dx.doi.org/10.28919/cmbn/5060.
C.W. Chukwu, F. Nyabadza, Mathematical modeling of listeriosis incorporating effects of awareness programs, Math. Models Comput. Simul. (2021) http://dx. doi.org/10.1134/S2070048221040116.
C.W. Chukwu, M.L. Juga, Z. Chazuka, J. Mushanyu, Mathematical analysis and sensitivity assessment of HIV/AIDS-Listeriosis co-infection dynamics, Int. J. Appl. Comput. Math. (2022) http://dx.doi.org/10.1007/s40819-022-01458-3.
S. Osman, D. Otoo, C. Sebil, O.D. Makinde, Bifurcation, sensitivity and optimal control analysis of modelling anthrax-listeriosis co-dynamics, Commun. Math.Biol. Neurosci. (2020) http://dx.doi.org/10.28919/cmbn/5161.
S. Rekha, P. Balaganesan, J. Renuka, Homotopy perturbation method for mathematical modeling of Listeriosis and Anthrax diseases, Ann. Romanian Soc. Cell Biol. (2021) 9787-9809.
M.A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative, Alex. Eng. J. 59 (4) (2020) 2379-2389.
I.A. Baba, U.W. Humphries, F.A. Rihan, Role of vaccines in controlling the spread of COVID-19: A fractional-order model, Vaccines 11 (1) (2023) 145, http://dx.doi.org/10.3390/vaccines11010145.
E. Okyere, B. Seidu, K. Nantomah, J.K.K. Asamoah, Fractal-fractional SIRS epidemic model with temporary immunity using Atangana-Baleanu derivative, Commun. Math. Biol. Neurosci. 2022 (2022) 72.
S.E. Alhazmi, S.A. Abdelmohsen, M.A. Alyami, A. Ali, J.K.K. Asamoah, A novel analysis of generalized perturbed zakharov kuznetsov equation of fractionalorder arising in dusty plasma by natural transform decomposition method, J. Nanomater. (2022) http://dx.doi.org/10.1155/2022/7036825, Jun 1;2022.
Z. Wu, Y. Cai, Z. Wang, W. Wang, Global stability of a fractional order SIS epidemic model, J. Differ. Equ. 352 (2023) 221-248, http://dx.doi.org/10.1016/ j.jde.2022.12.045.
S. Rezapour, J.K.K. Asamoah, A. Hussain, H. Ahmad, R. Banerjee, S. Etemad, T.Botmart, A theoretical and numerical analysis of a fractal fractional two-strain model of meningitis, Results Phys. 39 (2022) 105775, http://dx.doi.org/10.1016/ j.rinp.2022.105775.
S. Paul, A. Mahata, S. Mukherjee, P.C. Mali, B. Roy, Dynamical behavior of a fractional order SIR model with stability analysis, Results Control Optim. (2023) 100212, http://dx.doi.org/10.1016/j.rico.2023.100212.
S. Rezapour, S. Etemad, J.K.K. Asamoah, H. Ahmad, K. Nonlaopon, A mathematical approach for studying the fractal-fractional hybrid Mittag-Leffler model of malaria under some control factors, AIMS Math. 8 (2) (2023) 3120-3162, http://dx.doi.org/10.3934/math.2023161.
A. Omame, D. Okuonghae, U.K. Nwajeri, C.P. Onyenegecha, A fractional-order multi-vaccination model for COVID-19 with non-singular kernel, Alex. Eng. J. 61 (8) (2022) 6089-6104, http://dx.doi.org/10.1016/j.aej.2021.11.037.
M.B. Jeelani, A.S. Alnahdi, M.S. Abdo, M.A. Almalahi, N.H. Alharthi, K. Shah, A generalized fractional order model for COV-2 with vaccination effect using real data, Fractals (2023) http://dx.doi.org/10.1142/S0218348X2340042X.
P. Sawangtong, K. Logeswari, C. Ravichandran, K.S. Nisar, V. Vijayaraj, Fractional order geminivirus impression in capsicum annuum model with Mittag-Leffler kernel, Fractals (2023) http://dx.doi.org/10.1142/S0218348X23400492.
R. George, K. Mohammadi, H. Mohammadi, R. Ghorbanian, S. Rezpour, A. Duc, The study of cholera transmission using an SIRZ fractional order mathematical model, Fractals (2023) http://dx.doi.org/10.1142/S0218348X23400534.
A. Sajjad, M. Farman, A. Hasan, K.S. Nisar, Transmission dynamics of fractional order yellow virus in red chili plants with the Caputo-fabrizio operator, Math. Comput. Simul. (2023) http://dx.doi.org/10.1016/j.matcom.2023.01.004.
Y. Mahatekar, P.S. Scindia, P. Kumar, A new numerical method to solve fractional differential equations in terms of Caputo-Fabrizio derivatives, Phys. Scr. 98 (2) (2023) 024001, http://dx.doi.org/10.1088/1402-4896/acaf1a.
S.N. Nortey, M. Juga, E. Bonyah, Fractional order modelling of Anthrax- Listeriosis coinfection with nonsingular Mittag Leffler law, Sci. Afr. (2022), e01221, http://dx.doi.org/10.1016/j.sciaf.2022.e01221.
E. Bonyah, M. Yavuz, D. Baleanu, S. Kumar, A robust study on the listeriosis disease by adopting fractal-fractional operators, Alex. Eng. J. 61 (2022) 2016-2028, http://dx.doi.org/10.1016/j.aej.2021.07.010.
K. Das, P.Shahrear, S.M.S.Rehman, M.N.Srinivas, Md.M.H.Nahid, B.S.N.Murthy, Transmission dynamics and control of Covid-19: A mathematical study, Journal of applied nonlinear dynamics, 2023, 12(2), 400-425.
Das, K., Reddy, K. S., Srinivas, M. N., and Gazi, N. H. (2014). Chaotic dynamics of a three species prey-predator competition model with noise in ecology.Applied Mathematics and Computation, 231, 117-133.
Smith, J., Brown, L., and Davis, M. (2020). A mathematical model and optimal control for listeriosis disease from ready-to-eat food products. Journal of Infectious Diseases, 35(2), 123-134.
Johnson, P., Smith, L., and Taylor, M. (2018). Intervention strategies for zoonotic diseases: A comparative study of treatment and vaccination approaches. Journal of Epidemiological Research, 45(3), 200-215.
Thirthar, A. A., Naji, R. K., Bozkurt, F., and Yousef, A. (2021). Modeling and analysis of an SI1I2R epidemic model with nonlinear incidence and general recovery functions of I1. Chaos, Solitons and Fractals, 145, 110746.
Naji, R. K., and Hussien, R. M. (2016). The dynamics of epidemic model with two types of infectious diseases and vertical transmission. Journal of applied mathematics, 2016(1), 4907964.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kalyan Das

This work is licensed under a Creative Commons Attribution 4.0 International License.